Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (08): 189-196.doi: 10.13475/j.fzxb.20210400108

• Comprehensive Review • Previous Articles     Next Articles

Research progress on thermal comfort of infant bedding

JIANG Shu1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of;Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-04-01 Revised:2021-07-07 Online:2022-08-15 Published:2022-08-24
  • Contact: LI Jun E-mail:lijun@dhu.edu.cn

Abstract:

Considering the improvement of the thermal physiological comfort of infants, as well as the establishment of infant bedding thermal comfort evaluation system, this paper reviewed previous researches on the thermal comfort of infant bedding. Based on the analysis of the heat transfer mechanism between the infants and the environment, the influencing factors and test methods for the thermal comfort of the infant bedding were discussed. Besides, the research trend in the field was proposed. Previous researches revealed that the thermal equilibrium of the infants was achieved mainly through the conductive, convective, radiative heat exchange between the surface of the infants and the environment. Moreover, the heat transfer coefficients at the infant skin surface were significantly greater than those of the adults. Excessive thermal protection given by the infant bedding, head covering and prone posture of the infants were likely to cause heat stress for the infants during sleep. Baby thermal manikin was considered as the most ideal device for the research on thermal comfort of infant bedding. In the future, the studies are supposed to focus on the heat and mass transfer process of bedding, numerical simulation on the mechanism of the heat transfer between infants and the environment, and the establishment of the thermoregulation model for infants.

Key words: infant bedding, thermal comfort, heat stress, baby thermal manikin, thermal insulation

CLC Number: 

  • TS941.73

Fig.1

Heat transfer mechanism between infant and environment"

Fig.2

Tucking methods. (a) Loose tucking; (b) Firm tucking"

Tab.1

Typical infant thermal manikin"

来源 制造单位 假人参数 优缺点
文献[6] 隆德大学
(瑞典)
质量:1 003 g;表面积:0.09 m2;身高:40 cm
材料:聚酯塑料覆盖聚酯泡沫
8区段
优点:头部与躯干均分为前后2个区段,考虑了传导与对流辐射热传递的差异
缺点:无法测量蒸发热损失
文献[43] 隆德大学
(瑞典)
质量:5 700 g;表面积:0.311 m2;身高:60 cm
材料:聚酯塑料覆盖聚酯泡沫
8区段
优点:头部与躯干均分为前后2区段,考虑了传导与对流辐射热传递的差异
缺点:无法测量蒸发热损失
文献[42] 亚眠大学
(法国)
质量:1 400 g;表面积:0.15 m2
材料:铜制,涂覆亚光黑色
6区段
优点:可考察各区段干热损失,被较早地用于研究头部覆盖、姿势等因素带来的影响
缺点:区段分割较少;无法测量蒸发热损失
文献[34] 亚眠大学
(法国)
质量:900 g;表面积:0.086 m2
材料:铜制,涂覆亚光黑色
6区段
可覆盖棉质皮肤衣
优点:出汗孔多,可测量蒸发热损失
缺点:区段分割较少;棉质皮肤衣影响湿阻测量结果的准确性
文献[45] 文化女子
大学(日本)
表面积:0.47 m2(含头),0.40 cm2(不含头);身高:84 cm
材料:玻璃纤维外壳、加固塑料
16区段
32个出汗孔,出汗量为2942 184 g/(h·m2)
覆盖棉针织套装与Gore-Tex皮肤衣
优点:区段划分多,可考察局部散热;Gore-Tex皮肤衣保证水以气态形式散出,提高湿阻测量结果准确性
缺点:没有头部区段,无法测量帽子或全身总热损失;难以模拟低水平出汗

Fig.3

Typical baby thermal manikin. (a) Thermal manikin from Lund University (height 40 cm); (b) Thermal manikin from Lund University (height 60 cm); (c) Thermal manikin from University of Picardie Jules Verne; (d) Sweating thermal manikin from University of Picardie Jules Verne; (e) Sweating thermal manikin from Bunka Gakuen University"

[1] WILLIAMS S M, TAYLOR B J, MITCHELL E A. Sudden infant death syndrome: insulation from bedding and clothing and its effect modifiers[J]. International Journal of Epidemiology, 1996, 25(2): 366-370.
doi: 10.1093/ije/25.2.366
[2] STANTON A N. Overheating and cot death[J]. Lancet, 1984, 3: 1199-1201.
[3] SUNDERLAND R, EMERY J L. Febrile convulsions and cot death[J]. Lancet, 1981, 2: 176-178.
[4] MITCHELL E A, THOMPSON J M D, BECROFT D M O, et al. Head covering and the risk for SIDS: findings from the New Zealand and German SIDS case-control studies[J]. Pediatrics, 2008, 121(6): 1478-1483.
[5] L'HOIR M P, ENGELBERTS A C, WELL G T, et al. Risk and preventive factors for cot death in The Netherlands, a low-incidence country[J]. European Journal of Pediatrics, 1998, 157(8): 681-688.
doi: 10.1007/s004310050911
[6] SARMAN I, BOLIN D, HOLMÉR I, et al. Assessment of thermal conditions in neonatal care: use of a manikin of premature baby size[J]. American Journal of Perinatology, 1992, 9(4): 239-246.
doi: 10.1055/s-2007-994780
[7] FUKAZAWA T, IKEDA S, SUK KIM S, et al. Seasonal clothing variation and thermal resistance of clothing ensembles of infants living in Kyushu[J]. Journal of Home Economics of Japan, 2009, 60(7): 635-643.
[8] WATSON L, POTTER A, GALLUCCI R, et al. Is baby too warm? the use of infant clothing, bedding and home heating in Victoria, Australia[J]. Early Human Development, 1998, 51(2): 93-107.
doi: 10.1016/S0378-3782(97)00085-6
[9] FUKAZAWA T, TOCHIHARA Y. The thermal manikin: a useful and effective device for evaluating human thermal environments[J]. Journal of the Human-Environment System, 2015, 18(1): 21-28.
doi: 10.1618/jhes.18.021
[10] WILSON C, NIVEN B, LAING R. Estimating thermal resistance of the bedding assembly from thickness of materials[J]. International Journal of Clothing Science and Technology, 1999, 11(5): 262-276.
doi: 10.1108/09556229910297536
[11] WILSON C A, LAING R M, NIVEN B E. Estimating dry thermal resistance of multiple-layer bedding materials-re-examining the problem[J]. Journal of the Human-Environment System, 1999, 2(1): 69-85.
doi: 10.1618/jhes.2.69
[12] KERSLAKE M. The insulation provided by infants bedclothes[J]. Ergonomics, 1991, 34(7): 893-907.
doi: 10.1080/00140139108964833
[13] GINALSKI M, NOWAK A, WROBEL L. Modelling of heat and mass transfer processes in neonatology[J]. Biomedical Materials, 2008, 3: 1-11.
[14] GINALSKI M, NOWAK A, WROBEL L. A combined study of heat and mass transfer in a double-walled infant incubator[J]. Medical Engineering and Physics, 2007, 29(5): 531-541.
doi: 10.1016/j.medengphy.2006.07.011
[15] MCCULLOUGH E A, ZBIKOWSKI P J, JONES B W. Measurement and prediction of the insulation provided by bedding systems[J]. ASHREA Transactions, 1987, 93(1): 1055-1068.
[16] FLEMING P, BERRY J, GILBERT R, et al. Bedding and sleeping position in the sudden infant death syndrome[J]. British Medical Journal, 1990, 301: 871-872.
[17] MITCHELL E A, WILLIAMS S M, TAYLOR B J. Use of duvets and the risk of sudden infant death synd-rome[J]. Archives of Disease in Childhood, 1999, 81(2): 117-119.
doi: 10.1136/adc.81.2.117
[18] WILSON C, LAING R, NIVEN B. Multiple-layer bedding materials and the effect of air spaces on 'wet' thermal resistance of dry materials[J]. Journal of the Human-Environment System, 2000, 4(1): 23-32.
doi: 10.1618/jhes.4.23
[19] PONSONBY A L, DWYER T, COUPER D, et al. Association between use of a quilt and sudden infant death syndrome: case-control study[J]. British Medical Journal, 1998, 316: 195-196.
[20] SARA A, PETE B, JOHN H, et al. Is the mattress important in helping babies keep warm? paradoxical effects of a sleeping surface with negligible thermal resistance[J]. Acta Peadiatrica, 2009, 96(2): 199-205.
[21] LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics-measuring the total insulation values for the bedding systems commonly used in the subtropics[J]. Building and Environment, 2008, 43(1): 905-916.
doi: 10.1016/j.buildenv.2007.01.027
[22] GLOVER WILLIAMS A, FINLAY F. Can infant sleeping bags be recommended by medical professionals as protection against sudden infant death synd-rome?[J]. Archives of Disease in Childhood, 2018, 104: 1-2.
doi: 10.1136/archdischild-2018-315176
[23] ELABBASSI E B, CHARDON K, BACH V R, et al. Head insulation and heat loss in naked and clothed newborns using a thermal mannequin[J]. Medical Physics, 2002, 29(6): 1090-1096.
doi: 10.1118/1.1481518
[24] WILSON C A, CHU M S. Thermal insulation and SIDS-an investigation of selected 'Eastern' and 'Western' infant bedding combinations[J]. Early Human Development, 2005, 81(8): 695-709.
doi: 10.1016/j.earlhumdev.2005.05.003
[25] HULL D, MCARTHUR A J, PRITCHARD K, et al. Metabolic rate of sleeping infants[J]. Archives of Disease in Childhood, 1996, 75(4): 282-287.
doi: 10.1136/adc.75.4.282
[26] TOURULA M, FUKAZAWA T, ISOLA A, et al. Evaluation of the thermal insulation of clothing of infants sleeping outdoors in Northern winter[J]. European Journal of Applied Physiology, 2011, 111(4): 633-640.
doi: 10.1007/s00421-010-1686-1
[27] RISING R, DURO D, CEDILLO M, et al. Daily metabolic rate in healthy infants[J]. Journal of Pediatrics, 2003, 143(2): 180-185.
doi: 10.1067/S0022-3476(03)00362-7
[28] FUKAZAWA T, ANDO T, IKEDA S, et al. Convective heat transfer coefficient from baby is larger than that from adult[C]//Proceedings of 13th International Conference on Environmental Ergonomics. Wollongong: University of Wollongong, 2009: 318-322.
[29] BELGHAZI K, TOURNEUX P, ELABBASSI E B, et al. Effect of posture on the thermal efficiency of a plastic bag wrapping in neonate: assessment using a thermal “sweating” mannequin[J]. Medical Physics, 2006, 33(3): 637-644.
doi: 10.1118/1.2163248
[30] ELABBASSI E B, CHARDON K, TELLIEZ F, et al. Influence of head position on thermal stress in newborns: simulation using a thermal mannequin[J]. Journal of Applied Physiology, 2002, 93(4): 1275-1279.
doi: 10.1152/japplphysiol.00336.2002
[31] NELSON E A S, TAYLOR B J, WEATHERALL I L. Sleeping position and infant bedding may predispose to hyperthermia and the sudden infant death syndrome[J]. Lancet, 1989, 333(8631): 199-201.
doi: 10.1016/S0140-6736(89)91211-7
[32] BOLTON D P G, NELSON E A S, TAYLOR B J, et al. Thermal balance in infants[J]. Journal of Applied Physiology, 1996, 80(6): 2234-2242.
doi: 10.1152/jappl.1996.80.6.2234
[33] TSOGT B, MANASEKI-HOLLAND S, POLLOCK J, et al. Thermoregulatory effects of swaddling in Mongolia: a randomised controlled study[J]. Archives of Disease in Childhood, 2015, 64(16): 152-160.
[34] BELGHAZI K, ELABBASSI E B, TOURNEUX P, et al. Assessment of whole body and regional evaporative heat loss coefficients in very premature infnats using a thermal mannequin: influence of air velocity[J]. Medical Physics, 2005, 32(3): 752-758.
doi: 10.1118/1.1862074
[35] SULYOK E, JÉQUIER E, RYSER G. Effect of relative humidity on thermal balance of the newborn infant[J]. Biology of the Neonate, 1972, 21(3): 210-218.
[36] OKKEN A, BLIJHAM C, FRANZ W, et al. Effects of forced convection of heated air on insensible water loss and heat loss in preterm infants in incubators[J]. J Pediatr, 1982, 101(1): 108-112.
[37] SARMAN I, CAN G, TUNELL R. Rewarming preterm infants on a heated, water filled mattress[J]. Archives of Disease in Childhood, 1989, 64(5): 687-692.
doi: 10.1136/adc.64.5.687
[38] SARMAN I, TUNELL R. Providing warmth for preterm babies by a heated, water filled mattress[J]. Archives of Disease in Childhood, 1989, 64(1): 29-33.
doi: 10.1136/adc.64.1_Spec_No.29
[39] SARMAN I. Thermal responses and heart rates of low-birth-weight premature babies during daily care on a heated, water-filled mattress[J]. Acta Peadiatrica: Promoting Child Health, 1992, 81(1): 15-20.
[40] SAUSENG W, KERBL R, THALLER S, et al. Baby sleeping bag and conventional bedding conditions: comparative investigations by infrared thermography[J]. Klinische Padiatrie, 2011, 223(5): 276-279.
doi: 10.1055/s-0031-1277142
[41] RODRÍGUEZ A, VARGAS E, PERDOMO CHARRY O. Breathing and temperature detection using thermal images in infants[J]. Vision Electronica, 2018. DOI: org/10.14483/issn, 2248-4728.
doi: org/10.14483/issn, 2248-4728
[42] ELABBASSI E B, BACH V. Assessment of dry heat exchanges in newborns: influence of body position and clothing in SIDS[J]. Journal of Applied Physiology, 2001, 91(1): 51-56.
doi: 10.1152/jappl.2001.91.1.51
[43] FUKAZAWA T, TOCHIHARA Y, TSUNEYUKI Y, et al. Usability of a newly developed thermal manikin of infant to assess thermal stress in various environ-ments[C]//Proceedings of the 11th International Conference of Environmental Ergonomics. Lund: Lund University, 2005: 618-623.
[44] KUKLANE K, SANDSUND M, REINERTSEN R E, et al. Comparison of thermal manikins of different body shapes and size[J]. European Journal of Applied Physiology, 2004, 92(6): 683-688.
doi: 10.1007/s00421-004-1116-3
[45] KANG I H, TAMURA T. A study on the development of an infant-sized movable sweating thermal manikin[J]. Journal of the Human-Environment System, 2001, 5(1): 49-56.
doi: 10.1618/jhes.5.49
[46] WILSON C A, LAING R M, TAMURA T. Intrinsic ″dry″ thermal resistance of dry infant bedding during use[J]. International Journal of Clothing Science and Technology, 2004, 16(3): 310-323.
doi: 10.1108/09556220410527237
[1] GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196.
[2] WU Guoshan, LIU Heqing, WU Shixian, YOU Bo, SONG Xiaopeng. Cooling capacity of personal ventilation systems in different environments [J]. Journal of Textile Research, 2021, 42(10): 139-145.
[3] PAN Mengjiao, LU Yehu, WANG Min. Prediction of thermal comfort for bedding system based on four-node thermoregulation model [J]. Journal of Textile Research, 2021, 42(09): 150-155.
[4] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[5] YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100.
[6] ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26.
[7] SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145.
[8] XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114.
[9] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
[10] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[11] LIU Yuping, LU Yehu, WANG Laili. Research progress on thermal comfort of bedding system [J]. Journal of Textile Research, 2020, 41(01): 190-196.
[12] ZHAO Mengmeng, KE Ying, WANG Faming, LI Jun. Research and development trend of ventilation clothing thermal comfort [J]. Journal of Textile Research, 2019, 40(03): 183-188.
[13] . Drying eperiment and kinetics of wetted fabrics exposed to thermal radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 52-57.
[14] . Relationship between static and dynamic thermal insulation of local or whole body and its model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 111-115.
[15] . Design of cooling firefighting protective clothing and evaluation on cooling performance [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!