Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 149-155.doi: 10.13475/j.fzxb.20210705507

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation

YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang()   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-07-19 Revised:2022-06-19 Online:2022-09-15 Published:2022-09-26
  • Contact: HAN Zhenbang E-mail:hanzhenbang@tiangong.edu.cn

Abstract:

To improve the photocatalytic performance of MoSx/TiO2 heterojunction, amorphous MoSx was anchored onto amidoximated polyacrylonitrile (PAN) fiber via an adsorption and in-situ transformation method, and then TiO2 was immobilized onto the fibrous support in order to synthesize a composite photocatalyst. The morphology, chemical structure and optical property of the photocatalyst were investigated, and its photocatalytic performance on the oxidation of dye wastewater was evaluated under visible light irradiation. The results show that MoSx and TiO2 can be uniformly distributed onto the fibrous surface, and the MoSx significantly enhances the light absorption of the photocatalyst. The as-prepared photocatalyst could achieve the fast oxidative degradation of the dye wastewater under light irradiation with wavelength greater than 500 nm, resulting in a 4.7-fold higher reaction kinetics versus the reaction system over single TiO2 supported fibrous photocatalyst. In addition, the photocatalyst exhibited high recycling ability for dye degradation. This high photocatalytic activity mainly originates from the enhanced adsorption performance towards pollutants by MoSx, as well as the sensitization effect of MoSx to TiO2 under visible light irradiation.

Key words: MoSx, TiO2, modified polyacrylonitrile fiber, photocatalysis, dye degradation, dye wastewater, wastewater treatment

CLC Number: 

  • TQ619.2

Tab.1

Metal content of various MoSx/TiO2-PAN samples"

样品名称 溶液中浓度/
(mol·L-1)
催化剂中含量/
(mg·g-1)
C M o S x
C T i O 2
Mo S 4 2 - TiO2 CMoSx C T i O 2
TiO2-PAN 0 0.094 0 85.6
MoSx/TiO2-PAN1 0.012 0.094 3.9 75.8 0.05∶1
MoSx/TiO2-PAN2 0.018 0.094 6.8 73.9 0.09∶1
MoSx/TiO2-PAN3 0.024 0.094 9.6 73.6 0.13∶1
MoSx/TiO2-PAN4 0.030 0.094 12.5 71.8 0.17∶1

Fig.1

SEM image and EDAX maps of MoSx/TiO2-PAN3. (a) SEM image; (b) EDAX map of Ti element; (c) EDAX map of Mo element; (d) EDAX map of S element"

Fig.2

FT-IR spectra of AO-PAN and MoSx/TiO2-PAN3 samples"

Fig.3

XPS spectra of MoSx/TiO2-PAN3 samples. (a) Wide scan spectra; (b) Ti 2p spectra; (c) Mo 3d spectra; (d) S 2p spectra"

Fig.4

UV-Vis diffuse reflectance absorption spectra of different MoSx/TiO2-PAN samples"

Fig.5

Photocatalytic degradation curves of RhB of different MoSx/TiO2-PAN samples"

Tab.2

k values of photocatalytic degradation of RhB and adsorption removal under dark conditions of different MoSx/TiO2-PAN samples"

样品名称 k/min-1 降解率/%
TiO2-PAN 0.006 17.6
MoSx/TiO2-PAN1 0.010 23.3
MoSx/TiO2-PAN2 0.022 25.1
MoSx/TiO2-PAN3 0.028 26.6
MoSx/TiO2-PAN4 0.011 27.3

Fig.6

PL spectra of MoSx-PAN and MoSx/TiO2-PAN samples"

Fig.7

Effect of scavengers on photocatalytic degradation rate of RhB with MoSx/TiO2-PAN3"

Fig.8

Effect of solution pH values on photocatalytic degradation rate of RhB with MoSx/TiO2-PAN3"

Fig.9

Recyclability of MoSx/TiO2-PAN3 for dye degradation"

[1] 刘俊逸, 黄青, 李杰, 等. 印染工业废水处理技术的研究进展[J]. 水处理技术, 2021, 47(3): 1-6.
LIU Junyi, HUANG Qing, LI Jie, et al. Research progress on the treatment technologies of industrial printing and dyeing wastewater[J]. Technology of Water Treatment, 2021, 47(3): 1-6.
[2] 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113.
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113.
[3] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Review, 2014, 114: 9919-9986.
doi: 10.1021/cr5001892
[4] ASAHI R, MORIKAWA T, IRIE H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects[J]. Chemical Review, 2014, 114: 9824-9852.
doi: 10.1021/cr5000738
[5] 巩云, 王龙龙, 徐亚琪, 等. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(2): 1037-1040.
GONG Yun, WANG Longlong, XU Yaqi, et al. Research progress on photocatalytic modification of titanium dioxide[J]. Materials Reports, 2020, 34(2): 1037-1040.
[6] TIAN H, LIU M, ZHENG W. Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2018, 225: 468-476.
doi: 10.1016/j.apcatb.2017.12.019
[7] ZHOU W, YIN Z, DU Y, et al. Synthesis of few-layer MoS2nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities[J]. Small, 2013, 9: 140-147.
doi: 10.1002/smll.201201161
[8] WANG D, XU Y, SUN F, et al. Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification[J]. Applied Surface Science, 2016, 389: 496-506.
doi: 10.1016/j.apsusc.2016.07.154
[9] YU H, XIAO P, WANG P, et al. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution[J]. Applied Catalysis B:Environmental, 2016, 193: 217- 225.
doi: 10.1016/j.apcatb.2016.04.028
[10] 张敬, 孙学凤, 高婷婷, 等. TiO2/MoS2复合材料的制备及其在光催化和储能电池中的应用研究进展[J]. 化工新型材料, 2018, 46(6): 43-47.
ZHANG Jing, SUN Xuefeng, GAO Tingting, et al. Research progress on preparation of TiO2/MoS2 composite and its application in photocatalysis and energy storage battery[J]. New Chemical Materials, 2018, 46(6): 43-47.
[11] HAN Z, LI J, HAN X, et al. A comparative study of iron-based PAN fibrous catalysts for peroxymonosulfate activation in decomposing organic contaminants[J]. Chemical Engineering Journal, 2019, 358: 176-187.
doi: 10.1016/j.cej.2018.09.224
[12] 于建涛, 韩振邦, 张健飞, 等. 联吡啶铁铜双金属负载PAN纤维的制备及其可见光催化性能研究[J]. 功能材料, 2015, 24(46): 24095-24104.
YU Jiantao, HAN Zhenbang, ZHANG Jianfei, et al. Preparation and photocatalytic properties of PAN fiber supported copper-iron bimetallic 2,2'-bipyridine compl-ex[J]. Functional Materials, 2015, 24(46): 24095-24104.
[13] HAN Z, DENG Y, FEI J, et al. Facile synthesis of amidoximated PAN fiber-supported TiO2 for visible light driven photocatalysis[J]. Colloid Surface A, 2020. DOI: 10.1016/j.colsurfa.2020.124947.
doi: 10.1016/j.colsurfa.2020.124947
[14] JI X, HAN Z, LI J, et al. MoSx co-catalytic activation of H2O2 by heterogeneous hemin catalyst under visible light irradiation[J]. Journal of Colloid Interface Science, 2019, 557: 301-310.
doi: 10.1016/j.jcis.2019.09.027
[15] LEE C G, JAVED H, ZHANG D, et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants[J]. Environmental Science and Technology, 2018, 52: 4285-4293.
doi: 10.1021/acs.est.7b06508
[16] CHANG Y, LIN C, CHEN T, et al. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Advanced Materials, 2013, 25: 756-760.
doi: 10.1002/adma.201202920
[17] TANG M L, GRAUER D C, LASSALLE-KAISER B, et al. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer[J]. Angewandte Chemie International Edition, 2011, 50: 10203-10207.
doi: 10.1002/anie.201104412
[18] CHANG K, MEI Z, WANG T, et al. MoS2/grapheme cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation[J]. ACS Nano, 2014, 8(7): 7078-7087.
doi: 10.1021/nn5019945
[19] 董永春, 李春辉, 陈佳莉, 等. 偶氮染料在无机盐存在下的光催化氧化降解反应[J]. 太阳能学报, 2007, 28(5): 522-526.
DONG Yongchun, LI Chunhui, CHEN Jiali, et al. Photocatalytic degradation of azo dyes in the presence of inorganic salts[J]. Acta Energiae Solaris Sinica, 2007, 28(5): 522-526.
[1] WANG Shuangshuang, JI Zhihao, SHENG Guodong, JIN Enqi. Dye and heavy metal adsorption performance of zero-valent iron/graphene oxide blend absorbent [J]. Journal of Textile Research, 2022, 43(09): 156-166.
[2] WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal\|organic framework/activated carbon fiber composites [J]. Journal of Textile Research, 2022, 43(08): 126-131.
[3] ZHANG Yaning, ZHANG Hui, SONG Yueyue, LI Wenming, LI Wenjun, YAO Jiale. Preparation of discarded mask-based ZIF-8/Ag/TiO2 composite and its photocatalytic property for dye degradation [J]. Journal of Textile Research, 2022, 43(07): 111-120.
[4] GAO Luxi, LÜ Xuechuan, ZHANG Chi, SONG Hanlin, GAO Xiaohan. Synthesis and decolorizing performance of modified flocculant for treating dyeing wastewater [J]. Journal of Textile Research, 2022, 43(07): 121-128.
[5] QIAN Jiaqi, QU Jian'gang, HU Xiaolin, MAO Qinghui. Preparation and property of reduced graphene oxide/viscose-based BiVO4 photocatalyst [J]. Journal of Textile Research, 2022, 43(06): 100-106.
[6] FEI Jianwu, LÜ Mingze, LIU Liwei, WANG Chunhong, HAN Zhenbang. Construction of air-liquid-solid tri-phase system from bilayer micro/nanofiber membrane and its photocatalytic performance [J]. Journal of Textile Research, 2022, 43(06): 37-43.
[7] XIE Mengyu, HU Xiaolin, LI Xing, QU Jian'gang. Fabrication and interfacial evaporation properties of reduced graphene oxide/viscose multi-layer composite [J]. Journal of Textile Research, 2022, 43(04): 117-123.
[8] HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116.
[9] DENG Yang, SHI Xianbing, WANG Tao, LIU Liwei, HAN Zhenbang. Preparation and performance of modified polyacrylonitrile fibers photocatalyst with MIL-53(Fe) [J]. Journal of Textile Research, 2022, 43(03): 58-63.
[10] WEI Na'na, LIU Die, MA Zheng, JIAO Chenlu. Adsorption performance of cellulose/chitosan magnetic aerogel prepared by freeze-thawing method [J]. Journal of Textile Research, 2022, 43(02): 53-60.
[11] ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater [J]. Journal of Textile Research, 2022, 43(02): 196-201.
[12] JIN Yaofeng, LIU Leigen, WANG Wei, LU Xin. Preparation and UV shielding of rutile nano-TiO2 by induction of nanocrystal-cellulose at room temperature [J]. Journal of Textile Research, 2022, 43(02): 176-182.
[13] SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110.
[14] LI Qing, CHEN Linghui, LI Dan, WU Zhiqiang, ZHU Wei, FAN Zenglu. Research progress in photocatalytic degradation of dyes using metal-organic frameworks [J]. Journal of Textile Research, 2021, 42(12): 188-195.
[15] LAI Xing, WANG Chun, XIAO Changfa, WANG Liming, XIN Binjie. Progress in preparation and application of aromatic polyamide separation membrane [J]. Journal of Textile Research, 2021, 42(10): 172-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!