Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 167-174.doi: 10.13475/j.fzxb.20210802708

• Apparel Engineering • Previous Articles     Next Articles

Effect of clothing deformation on thermal insulation capacity of down jackets

WU Daiwei1, HUANG Jiacheng1, WANG Yunyi1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-08-03 Revised:2022-06-04 Online:2022-09-15 Published:2022-09-26
  • Contact: WANG Yunyi E-mail:wangyunyi@dhu.edu.cn

Abstract:

To explore the influence of clothing deformation on the thermal insulation capacity of down jackets, a belt tightening method was used to deform the clothing with deformation levels. Four levels of down fill weight, 110, 135, 150, 180 g/m2, representing light, ordinary, midweight, and weight protective down jackets, were adopted to make sample down jackets. The thermal resistance of these samples, as well as the local volume which consists of the sample and the air layer under it under different deformation levels were obtained by thermal manikin test, respectively. The influence of clothing deformation on the total and local thermal resistance of down jackets was then investigated and analyzed. The results show that the deformation of down jackets will change the state of air flow inside the down jackets, having influence on the thermal insulation capacity of down jackets depending on different down fill weight. There exists a degree of deformation that leads to the optimal thermal insulation capacity of the down jackets. Local thermal insulation value of clothing and the range and regularity of its variation affected by deformation are associated with the concave and convex body surface, and with the clothing openings.

Key words: clothing deformation, down jacket, down fill weight, thermal insulation capacity, heat transfer

CLC Number: 

  • TS941.77

Tab.1

Specifications of down jacket samplecm"

衣长 袖长 肩宽 领围 胸围 腰围 下摆 袖窿长 袖口
70 63 55.5 60.5 123 118 116 56.5 20

Fig.1

Belt tightening method to simulate down jacket deformation under pressure"

Tab.2

Design of deformation level"

部位 不同形变水平系带收紧量/cm
0 a/3 2a/3 a
A 0 2.5 5 7.5
B 0 7.0 14 21.0
C 0 8.0 16 24.0
D 0 9.0 18 27.0

Fig.2

Down jacket sample and scanning mark point"

Tab.3

Total thermal resistance of down jacket system under different deformation levels"

充绒量/
(g·m-2)
总热阻(R)/clo
无形变 低形变 中形变 高形变
110 1.556 1.583 1.578 1.542
135 1.650 1.653 1.624 1.610
150 1.634 1.634 1.615 1.565
180 1.601 1.636 1.603 1.591

Tab.4

Change rate of total thermal resistance of down jacket system when deformation state changes"

充绒量/
(g·m-2)
无形变-
低形变/%
低形变-
中形变/%
中形变-
高形变/%
110 1.74 -0.32 -2.28
135 0.18 -1.75 -0.86
150 0.00 -1.16 -3.10
180 2.19 -2.02 -0.75

Fig.3

Eight zones and belt positions of thermal manikin"

Tab.5

Local thermal resistance of down jacket system with fill weight of 110 g/m2 under different deformation levels"

形变水平 不同部位热阻/clo
UC UB LC LB WA WB RA RB
无形变 2.825 3.351 5.235 5.524 5.559 3.493 3.063 3.583
低形变 2.755 3.523 5.707 5.664 5.031 3.707 3.093 3.751
中形变 2.715 3.177 4.875 5.476 5.235 3.511 3.450 4.053
高形变 2.580 3.289 4.233 5.415 4.270 2.880 3.103 3.514

Tab.6

Local thermal resistance of down jacket system with fill weight of 135 g/m2 under different deformation levels"

形变水平 不同部位热阻/clo
UC UB LC LB WA WB RA RB
无形变 3.211 3.535 6.575 6.226 5.233 4.001 3.303 5.028
低形变 3.028 3.552 5.873 6.275 5.711 3.794 3.630 4.882
中形变 2.715 3.177 4.875 5.476 5.235 3.511 3.450 4.053
高形变 3.053 3.536 5.086 5.570 4.988 3.182 3.725 4.192

Tab.7

Local thermal resistance of down jacket system with fill weight of 150 g/m2 under different deformation levels"

形变水平 不同部位热阻/clo
UC UB LC LB WA WB RA RB
无形变 3.171 3.858 6.710 6.240 5.514 4.199 3.300 4.726
低形变 3.417 4.136 6.300 5.947 5.683 4.055 3.490 5.171
中形变 3.083 3.623 5.602 6.222 5.318 3.643 3.387 4.114
高形变 3.091 3.497 4.668 5.511 4.750 3.288 3.534 3.893

Tab.8

Local thermal resistance of down jacket system with fill weight of 180 g/m2 under different deformation levels"

形变水平 不同部位热阻/clo
UC UB LC LB WA WB RA RB
无形变 3.289 4.365 6.538 6.295 5.482 4.204 3.492 4.533
低形变 3.283 4.526 6.324 6.611 6.041 4.410 3.764 4.600
中形变 3.327 4.518 6.041 6.446 5.832 4.385 3.731 4.350
高形变 3.300 4.231 5.156 5.503 5.050 3.873 3.575 3.260

Tab.9

Area weight of different parts of down jacket coverage section%"

上胸部 上背部 下胸部 下背部 腰腹部 腰臀部 右腹部 右臀部 左腹部 左臀部 右臂 左臂
10.89 9.38 12.06 7.49 5.54 5.96 5.78 3.25 5.78 3.25 15.31 15.31

Tab.10

Statistics of contribution of changes in local thermal resistance of down jackets to increase of total thermal resistance when deformation state changes"

羽绒服类型 无形变-低形变 低形变-中形变 中形变-高形变
正贡献数总和 负贡献数总和 正贡献数总和 负贡献数总和 正贡献数总和 负贡献数总和
薄型 86 241 383 190 733 32
普通型 263 160 884 0 89 385
中厚型 136 275 709 33 539 51
厚型 43 242 148 14 841 0

Tab.11

Partial volume change rate of down jacket system when deformation state changes%"

部位 无形变-低形变 低形变-中形变 中形变-高形变
薄型 普通型 中厚型 厚型 薄型 普通型 中厚型 厚型 薄型 普通型 中厚型 厚型
UC -10.25 -1.23 -21.61 -8.20 12.09 -3.22 16.25 -3.93 7.84 3.91 3.31 1.85
UB 9.02 -3.26 5.43 -7.34 -14.82 -12.22 -15.82 -9.19 3.75 1.67 -7.34 -3.58
LC -11.87 -10.79 -15.62 -4.82 -13.00 -12.83 -12.67 -14.52 -11.95 -15.91 -11.39 -20.33
LB -16.34 -22.26 -14.93 -23.78 -23.53 -12.14 -21.67 -16.90 -20.00 -35.28 -24.25 -27.39
WA -13.35 -11.91 -17.78 -7.60 -17.08 -10.92 -13.21 -16.26 -20.52 -27.18 -22.60 -25.17
WB -24.81 -24.89 -17.84 -29.70 -33.61 -28.50 -33.59 -22.86 -15.14 -32.03 -20.91 -16.60
RA 11.70 -11.27 -16.10 22.36 -29.78 -7.57 -18.62 -20.28 -17.20 -28.34 -25.06 -34.23
RB -17.71 -26.20 11.54 -45.51 -1.79 -0.28 -14.23 36.86 14.27 -0.56 -16.94 -16.25

Tab.12

Changes of local volume and thermal resistance of down jackets when deformation state changes"

部位 无形变-低形变 低形变-中形变 中形变-高形变
薄型 普通型 中厚型 厚型 薄型 普通型 中厚型 厚型 薄型 普通型 中厚型 厚型
UC
UB
LC
LB
WA
WB
RA
RB

Fig.4

Changes in volume of substances inside down jacket during deformation process"

[1] 李红彦, 吴黛唯, 陈涛, 等. 适用于户外低温作业服的防寒技术研究进展[J]. 上海纺织科技, 2019, 47(11): 1-6, 18.
LI Hongyan, WU Daiwei, CHEN Tao, et al. Research progress on the cold protective technology of working clothes for outdoor and low-temperature environment[J]. Shanghai Textile Science & Technology, 2019, 47(11): 1-6,18.
[2] KIM Y B, JANG W, KIM K, et al. Comparisons of thermal insulations between on air-cell pack embedded jacket and down jackets[J]. Journal of the Korean Society of Clothing and Textiles, 2015, 39(1): 55-62.
doi: 10.5850/JKSCT.2015.39.1.55
[3] GAO Jing, YU Weidong, PAN Ning. Structures and properties of the goose down as a material for thermal insulation[J]. Textile Research Journal, 2007, 77(8): 617-626.
doi: 10.1177/0040517507079408
[4] 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010, 31(12): 103-107.
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010, 31(12): 103-107.
[5] 王琼. 羽绒服材料的配伍变化对保暖性的影响[D]. 上海: 东华大学, 2016: 6.
WANG Qiong. Down material changes affect the compatibility of the warm[D]. Shanghai: Donghua University, 2016: 6.
[6] 何雨. 羽绒服材料的配伍变化对保暖性的影响[D]. 上海: 东华大学, 2020: 19-20.
HE Yu. Testing and evaluating the thermal resistance of down jacket[D]. Shanghai: Donghua University, 2020: 19-20.
[7] 李俊, 张渭源. 华东气候区羽绒防寒服的隔热性能研究[J]. 东华大学学报(自然科学版), 1998, 24(1): 21-25.
LI Jun, ZHANG Weiyuan. Study on the heat insulation property of down jackets worn in east China area[J]. Journal of Donghua University(Natural Science), 1998, 24(1): 21-25.
[8] 李婷婷, 王瑞, 武志云. 羽绒服最佳填充量的回归分析[J]. 上海纺织科技, 2010, 38(1): 13-15.
LI Tingting, WANG Rui, WU Zhiyun. Regression study on optimal filling density of down jacket[J]. Shanghai Textile Science & Technology, 2010, 38(1): 13-15.
[9] 刘涛, 杜赵群, 于伟东. 微胞式羽绒填充服的保暖性分析[J]. 东华大学学报(自然科学版), 2013, 39(3): 301-305.
LIU Tao, DU Zhaoqun, YU Weidong. Analysis of the warmth retention properties of down filling clothing with micelle structure[J]. Journal of Donghua Univer-sity(Natural Science), 2013, 39(3): 301-305.
[10] 孙莉, 杨莉, 袁惠芬. 基于正交试验的羽绒服保暖性的研究[J]. 武汉纺织大学学报, 2015, 28(6): 50-54.
SUN Li, YANG Li, YUAN Huifen. Research on the warmth retention property of down filling clothing based on orthogonal test[J]. Journal of Wuhan Textile University, 2015, 28(6): 50-54.
[11] 纪昭君. 羽绒服充绒因素与绗缝缩率关系的研究[D]. 上海: 东华大学, 2019: 7-8.
JI Zhaojun. Research on the relationship between filling factor and quilting shrinkage of down wear[D]. Shanghai: Donghua University, 2019: 7-8.
[12] 李俊, 王云仪, 张渭源. 人体着装部位间皮肤冷感受之差异性研究:冷感受性敏感秩位的配对比较分析[J]. 东华大学学报(自然科学版), 2002, 28(6): 12-16.
LI Jun, WANG Yunyi, ZHANG Weiyuan. Study on skin sensitive difference of human body sections under clothing: comparative judging of body sections' cold sensitivity sequence[J]. Journal of Donghua Univer-sity(Natural Science ), 2002, 28(6): 12-16.
[1] QIAN Juan, XIE Ting, ZHANG Peihua, FU Shaoju. Thermal and moisture comfort performance of polyethylene knitted fabric [J]. Journal of Textile Research, 2022, 43(07): 60-66.
[2] ZHU Xiaorong, HE Jiazhen, WANG Min. Application research progress in phase change materials for thermal protective clothing [J]. Journal of Textile Research, 2022, 43(04): 194-202.
[3] QIAN Miao, HU Hengdie, XIANG Zhong, MA Chengzhang, HU Xudong. Flow and heat transfer characteristics of non-uniform heat-pipe heat exchanger [J]. Journal of Textile Research, 2021, 42(12): 151-158.
[4] ZHANG Wenhuan, LI Jun. Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures [J]. Journal of Textile Research, 2021, 42(10): 190-198.
[5] ZHAO Jingde, DING Yiran, ZHANG Chunhong. Heat transfer modeling and experimental research of ventilation clothing in high-temperature outdoor environment [J]. Journal of Textile Research, 2021, 42(06): 153-159.
[6] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[7] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[8] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[9] KE Huizhen, LI Yonggui. Heat transfer property of capric acid-palmitic acid-stearic acid/polyacrylonitrile/boron nitride composite phase change fibrous membranes [J]. Journal of Textile Research, 2019, 40(03): 26-31.
[10] . Application of shape memory material in functional and protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 170-174.
[11] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[12] . Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 162-168.
[13] . Numerical simulation of condensation heat transfer in mandrel-containing horizontal heat exchanger tube [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 118-123.
[14] . Novel test method of clothing thermal insulation performance [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 92-99.
[15] . Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 171-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!