Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (09): 203-210.doi: 10.13475/j.fzxb.20210104508

• Comprehensive Review • Previous Articles     Next Articles

Review on toughening modification of carbon fiber/epoxy resin composites

XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • Received:2021-01-20 Revised:2022-05-31 Online:2022-09-15 Published:2022-09-26
  • Contact: LI Yuanyuan E-mail:yyli2017@suda.edu.cn

Abstract:

The brittle fracture of carbon fiber/epoxy resin composites can be improved by resin toughening and fiber modification. This paper reviewed the research progress of carbon fiber reinforced epoxy resin composites from three aspects: resin modification, interface modification and structure design. The toughness of epoxy resin was improved by increasing the bonding between filled particles and resin by modifying nano materials, rubber elastomer and thermoplastic resin. The interfacial modification was mainly the surface modification of carbon fiber. By increasing the surface active functional groups of carbon fiber or enhancing the surface modification at multiple scales, the interfacial bond between carbon fiber and epoxy resin is enhanced to toughen the composites. The structural design of composite materials was focused on the design of the fiber laying angle, thickness and structure, in order to enhance the toughness of composite materials through structural optimization. Finally, the problems of the three modification methods were analyzed, and the future research directions of composite modification were pointed out based on the combination of the three modification methods.

Key words: carbon fiber/epoxy resin composite, resin toughening, surface modification, toughening mechanism, structural design

CLC Number: 

  • TS195.6

Fig.1

Molecular model of functionalized silica nanoparticles"

Tab.1

Partial research results of epoxy resin modification"

填料 提升百分率/% 参考
文献
拉伸强度 弹性模量 冲击强度 断裂韧性
CTBN 440 [31]
CTBN 56.0 [32]
CTBN 2.7 5.5 20.9 [33]
ATBN 64 [35]
HTBN 28.5 [36]
VTBN 283 [37]
PBAE 100 [38]
聚砜型聚合物 111 [39]
聚醚醚酮聚合物 103 [40]
PSF/GO 8.8 2.3 90 [41]
四氨基甲酸酯 196.0 227 [42]

Tab.2

Partial results of surface modification of carbon fiber"

改性方法 提升百分率/% 参考
文献
层间剪切强度 拉伸强度 断裂韧性
电聚合 135.0 [45]
电聚合 31.2 64.0 [46]
E-GO接枝 97.7 [47]
多壁碳纳米管接枝 106.5 33.0 [48]
CNTs接枝 86.8 [49]

Fig.2

SEM images of CF before and after modification. (a) Unmodified CF; (b) APS modified CF;(c) APS and CNT modified CF"

Fig.3

SEM images of fracture surfaces in composite with different ply direction"

[1] MOLCHANOV E S, YUDIN V E, KYDRALIEVA K A, et al. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications[J]. Mechanics of Composite Materials, 2012, 48 (3): 343-350.
doi: 10.1007/s11029-012-9281-7
[2] LOU T J, LOPES S M R, LOPES A V. Factors affecting moment redistribution at ultimate in continuous beams prestressed with external CFRP tendons[J]. Composites Part B: Engineering, 2014, 66: 136-146.
doi: 10.1016/j.compositesb.2014.05.007
[3] OGASAWARA T, ISHIDA Y, KASAI T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites[J]. Composites Science and Technology, 2009, 69(11/12): 2002-2007.
doi: 10.1016/j.compscitech.2009.05.003
[4] VAN de Werken N, REESE M S, TAHA M R, et al. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites[J]. Composite Part A: Applied Science and Manufacturing, 2019, 119: 38-47.
[5] EKSI S, GENEL K. Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites[J]. Acta Physica Polonica A, 2017, 132(3): 879-882.
doi: 10.12693/APhysPolA.132.879
[6] GALYSHEV S, GOMZIN A, GALLYAMOVA R, et al. On the liquid-phase technology of carbon fiber/aluminum matrix composites[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(12): 1578-1584.
doi: 10.1007/s12613-019-1877-7
[7] ZHAO F, HUANG Y D, LIU L, et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composite[J]. Carbon, 2011, 49(8): 2624-2632.
doi: 10.1016/j.carbon.2011.02.026
[8] HSU Y I, HUANG L L, ASOH T A, et al. Anhydride-cured epoxy resin reinforcing with citric acid-modified cellulose[J]. Polymer Degradation and Stability, 2020, 178: 1-7.
[9] MENG L H, FAN D P, ZHANG C H, et al. Surface amination and hydrolyzation of carbon fibers treated with triethylene tetramine in supercritical water/ethanol system[J]. Composites Part B: Engineering, 2014, 56: 575-581.
doi: 10.1016/j.compositesb.2013.08.025
[10] YENIER Z, ALTAY L, SARIKANAT M. Effect of surface modification of carbon fibers on properties of carbon/epoxy composites[J]. Emerging Materials Research, 2020, 9(1): 110-118.
[11] JIA Z A, LI T T, CHIANG F P, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2018, 154: 53-63.
doi: 10.1016/j.compscitech.2017.11.015
[12] HUNG P Y, LAU K T, FOX B, et al. Effect of graphene oxide concentration on the flexural properties of CFRP at low temperature[J]. Carbon, 2019, 152: 556-564.
doi: 10.1016/j.carbon.2019.06.032
[13] WANG Z Y, YANG B, XIAN G, et al. An effective method to improve the interfacial shear strength in GF/CF reinforced epoxy composites characterized by fiber pull-out test[J]. Composites Communications, 2020, 19: 168-172.
doi: 10.1016/j.coco.2020.03.013
[14] HE Y X, CHEN Q Y, LIU H, et al. Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites[J]. Macromolecular Materials and Engineering, 2019, 304(8): 1-11.
[15] SHEN X J, LIU Y, XIAO H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Composites Science and Technology, 2012, 72(13): 1581-1587.
doi: 10.1016/j.compscitech.2012.06.021
[16] PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science and Technology, 2016, 135: 28-38.
doi: 10.1016/j.compscitech.2016.09.007
[17] HUNG P Y, LAU K T, QIAO K, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2019, 120: 56-63.
doi: 10.1016/j.compositesa.2019.02.012
[18] CHRUSCIEL J J, LESNIAK E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates[J]. Progress in Polymer Science, 2015, 41: 67-121.
doi: 10.1016/j.progpolymsci.2014.08.001
[19] YANG G, ZHENG B, YANG J P, et al. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 46(2): 612-624.
doi: 10.1002/pola.22409
[20] VIJAYAN P P, PUGLIA D, Al-MAADEED M A S A, et al. Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of 'micro' and 'nano' scale[J]. Materials Science & Engineering R: Reports, 2017, 116: 1-29.
[21] RICCIARDI M R, PAPA I, LANGELLA A, et al. Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin[J]. Composites Part B: Engineering, 2018, 139: 259-267.
doi: 10.1016/j.compositesb.2017.11.056
[22] KOU Y J, ZHOU W Y, LI B, et al. Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene[J]. Composites Part A: Applied Scienceand Manufacturing, 2018, 114: 97-106.
[23] FRANCIS B, THOMAS S, SADHANA R, et al. Diglycidyl ether of risphenol: a epoxy resin modified using poly (ether ether ketone) with pendent tert-butyl groups[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(17): 2481-2496.
doi: 10.1002/polb.21238
[24] JOHNSEN B B, KINLOCH A J, TAYLOR A C. Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms[J]. Polymer, 2005, 46(18): 7352-7369.
doi: 10.1016/j.polymer.2005.05.151
[25] KONNOLA R, JOJI J, PARAMESWARANPILLAI J, et al. Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites[J]. RSC Advances, 2015, 5(76): 61775-61786.
doi: 10.1039/C5RA10599D
[26] KARTHIKEYAN L, MATHEW D, ROBERT T M. Poly(ether ether ketone)-bischromenes: synthesis, characterization, and influence on thermal, mechanical, and thermo mechanical properties of epoxy resin[J]. Polymer for Advance Technologies, 2019, 30(4): 1061-1071.
[27] QUE X F, YAN Y R, QIU Z M, et al. Synthesis and characterization of trifluoromethyl-containing polyimide-modified epoxy resins[J]. Journal of Materials Science, 2016, 51(24): 10833-10848.
doi: 10.1007/s10853-016-0294-9
[28] ODEGARD G M, CLANCY T C, GATES T S. Modeling of the mechanical properties of nanoparticle/polymer composites[J]. Polymer, 2005, 46(2): 553-562.
doi: 10.1016/j.polymer.2004.11.022
[29] RUBAN Y J V, MON S G, ROY D V. Mechanical and thermal studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica[J]. Applied Nanoscience, 2013, 3(1): 7-12.
doi: 10.1007/s13204-012-0068-x
[30] TIAN Y, ZHANG H, ZHAO J, et al. High strain rate compression of epoxy based nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 62-70.
doi: 10.1016/j.compositesa.2016.06.008
[31] OCHI M, MORISHITA T, KOKUFU S, et al. Network chain orientation in the toughening process of the elastomer modified mesogenic epoxy resin[J]. Polymer, 2001, 42(24): 9687-9695.
doi: 10.1016/S0032-3861(01)00474-8
[32] XU S A, SONG X X, CAI Y B. Mechanical properties and morphologies of carboxyl-terminated butadiene acrylonitrile liquid rubber/epoxy blends compatibilized by pre-crosslinking[J]. Materials, 2016, 9(8): 1-12.
doi: 10.3390/ma9010001
[33] ZHOU H S, SONG X X, XU S A. Mechanical and thermal properties of novel rubber-toughened epoxy blend prepared by in situ pre-crosslinking[J]. Journal of Applied Polymer Science, 2014, 131(22): 2-7.
[34] GE Z, ZHANG W G, HUANG C, et al. Study on epoxy resin toughened by epoxidized hydroxy-terminated polybutadiene[J]. Materials, 2018, 11(6): 1-16.
doi: 10.3390/ma11010001
[35] CHIKHI N, FELLAHI S, BAKAR M. Modification of epoxy resin using reactive liquid (ATBN) rubber[J]. European Polymer Journal, 2002, 38(2): 251-264.
doi: 10.1016/S0014-3057(01)00194-X
[36] WANG C, LI H, ZHANG H L, et al. Influence of addition of hydroxyl-terminated liquid nitrile rubber on dielectric properties and relaxation behavior of epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2258-2269.
doi: 10.1109/TDEI.2016.7556502
[37] FAKHAR A, SALEHI M S, KEIVANI M, et al. Comprehensive study on using VTBN reactive oligomer for rubber toughening of epoxy resin and composite[J]. Polymer:Plastics Technology and Engineering, 2016, 55(4): 343-355.
doi: 10.1080/03602559.2015.1098677
[38] JONES A R, WATKINS C A, WHITE S R, et al. Self-healing thermoplastic-toughened epoxy[J]. Polymer, 2015, 74: 254-261.
doi: 10.1016/j.polymer.2015.07.028
[39] YING W B, YANG H S, MOON D S, et al. Epoxy resins toughened with in situ azide-alkyne polymerized polysulfones[J]. Journal of Applied Polymer Science, 2018, 135(5): 1-12.
[40] LEE J S, KO N Y, KWAK N H, et al. Toughening of semi-IPN structured epoxy using a new PEEK-type polymer via in situ azide-alkyne click polymerization[J]. Journal of Applied Polymer Science, 2019, 136(44): 243-251.
[41] WANG T T, HUANG P, LI Y Q, et al. Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide[J]. Composites Communication, 2019, 14: 55-60.
doi: 10.1016/j.coco.2019.05.007
[42] ZHANG M, CHEN M Q, NI Z B. PPG-terminated tetra-carbamates as the toughening additive for bis-a epoxy resin[J]. Polymer, 2019, 11(9): 1-11.
[43] SONG P, LIANG C B, WANG L, et al. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology, 2019, 181: 1-7.
[44] 龚克, 张海黔. 硅烷偶联处理工艺对CFRP的增强效果研究[J]. 润滑与密封, 2007, 32(4): 142-144.
GONG Ke, ZHANG Haiqian. Study on strengthening effect of silane coupling treatment on CFRP[J]. Lubrication Engineering, 2007, 32(4): 142-144.
[45] HUNG K B, LI J, FAN Q, et al. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(7): 1133-1140.
doi: 10.1016/j.compositesa.2008.04.004
[46] 王源升, 朱珊珊, 姚树人, 等. 碳纤维表面改性及对其复合材料性能的影响[J]. 高分子材料科学与工程, 2014, 30(2): 16-20.
WANG Yuansheng, ZHU Shanshan, YAO Shuren, et al. Surface modification of carbon fiber and its effect on properties of composites[J]. Polymeric Materials Science and Engineering, 2014, 30(2): 16-20.
[47] LUO Y C, CHENG X T, ZHANG X Q, et al. Fabrication of a three-dimensional reinforcement via grafting epoxy functionalized graphene oxide onto carbon fibers[J]. Materials Letters, 2017, 209: 463-466.
doi: 10.1016/j.matlet.2017.08.049
[48] WU G S, MA L C, LIU L, et al. Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering, 2015, 82: 50-58.
doi: 10.1016/j.compositesb.2015.08.012
[49] XIONG S, ZHAO Y, WANG Y K, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface Science, 2021, 546: 1-11.
[50] NAVARRO P, AUBRY J, PASCAL F, et al. Effects of the stacking sequence, material nature and addition of an adhesive film on the delamination resistance of woven composite laminates in mode I and Ⅱ[J]. Advanced Composites Letters, 2015, 24(1): 1-5.
[51] PARTRIDGE I K, CARTIE D D R. Delamination resistant laminates by Z-Fiber pinning: part I:manufacture and fracture performance[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(1): 55-64.
doi: 10.1016/S1359-835X(04)00180-0
[52] LI G Q, VELAMARTHY R C. Fabricating, testing, and modeling of advanced grid stiffened fiber reinforced polymer tube encased concrete cylinders[J]. Journal of Composite Materials, 2008, 42(11): 1103-1124.
doi: 10.1177/0021998308090453
[1] YANG Huiyu, ZHOU Jingyi, DUAN Zijian, XU Weilin, DENG Bo, LIU Xin. Research progress in textile surface multifunctional modification by atomic layer deposition [J]. Journal of Textile Research, 2022, 43(09): 195-202.
[2] DONG Zhijia, SUN Fei, CONG Honglian, YU Xuliang. Structural design and modeling of low-waste weft knitting fully fashioned female vests [J]. Journal of Textile Research, 2022, 43(07): 129-134.
[3] WANG Yanping, CHEN Xiaoqian, XIA Wei, FU Jiajia, GAO Weidong, WANG Hongbo, ARTUR Cavaco-Paulo. Application of cutinase in polyester surface modification [J]. Journal of Textile Research, 2022, 43(05): 136-142.
[4] QIAO Yansha, MAO Ying, XU Danyao, LI Yan, LI Shaojie, WANG Lu, TANG Jianxiong. Research progress in warp-knitted meshes for tackling complications after hernia repair [J]. Journal of Textile Research, 2022, 43(03): 1-7.
[5] CHEN Xiangxiang, WU Ting, ZHOU Weitao, SUN Yangyang, DU Shan, ZHANG Xiaoli. Grafting modification of polyamide 6 fabric with methyl methacrylate initiated by hydrogen peroxide/ascorbic acid and its properties [J]. Journal of Textile Research, 2021, 42(09): 131-136.
[6] LU Shuangyi, ZHOU Jiu. Balanced interlacement characteristics of compound full-color jacquard structure with single warp and double wefts [J]. Journal of Textile Research, 2021, 42(09): 59-65.
[7] WANG Weirong, CONG Honglian. Structural design of weft-knitted seamless yoga pants based on leg motion characteristics [J]. Journal of Textile Research, 2021, 42(06): 140-145.
[8] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[9] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[10] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[11] JIN Peng, XUE Zhebin, GE Yao. New intelligent mining clothing design with real-time gas monitoring function [J]. Journal of Textile Research, 2020, 41(11): 143-149.
[12] LIU Bingqian, SHENG Dan, PAN Heng, CAO Genyang. Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers [J]. Journal of Textile Research, 2019, 40(04): 15-20.
[13] . Surface modification of polyimide fabric by carboxylation [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 103-107.
[14] . Surface modification of Iron oxide yellow and its application in ultra-high molecular weight polyethylene [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 86-90.
[15] . Influence of surface modification on interfacial properties of polyester fabric/polyvinyl chloride composites [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!