Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (11): 195-202.doi: 10.13475/j.fzxb.20210905108

• Comprehensive Review • Previous Articles     Next Articles

Research progress in one-way water transport textiles and their applications

WANG Hongjie1,2(), HU Zhongwen1, WANG He1,3, FENG Quan1, LIN Tong4   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. Anhui Engineering and Technology Research Center of Textile, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    4. Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
  • Received:2021-09-13 Revised:2022-02-07 Online:2022-11-15 Published:2022-12-26

Abstract:

In order to further promote the one-way water transport technique with textiles and to expand its applications, a detailed overview on research, development, and applications of one-way water transport textiles is presented. This paper summarized the research progress in the one-way water transport textiles in recent years. The designed principles and the common preparation methods based on the surface energy gradient, development process, and the latest research progress were systematically introduced and discussed, and then the advantages and disadvantages of different preparation methods were reviewed and analyzed. The application fields were classified and discussed, including clothing, fog collection, oil-water separation, sensors and air filtration. The roles of one-way water transport textiles played in different applications were explained. Future developments and problems of the one-way water transport textiles were highlighted. Possible solutions were put forward aiming at the limitations of the preparation of one-way water transport textiles, and future development directions were discussed for theoretical and technical references to expand the applications of one-way water transport textiles.

Key words: one-way water transport, fabric, nanofiber membrane, wettability, surface energy gradient

CLC Number: 

  • TB34

Fig.1

Diagram of droplet spreadting"

[1] PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-33.
doi: 10.1038/35102108
[2] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 2:178-182.
[3] JIE J, HAO B, ZHENG Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3:1-6.
[4] CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(5): 85-89.
doi: 10.1038/nature17189
[5] GROOT B L, GRUBMULCER H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF[J]. Science, 2001, 294(5550): 2353-2357.
doi: 10.1126/science.1066115 pmid: 11743202
[6] 刘杰, 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(3): 50-55.
LIU Jie, WANG Fumei. Woven fabric structure design with unidirectional water transport property[J]. Journal of Textile Research, 2018, 39(3): 50-55.
[7] 李振, 石凌飞, 鄢友娟, 等. 新型单向导湿警用体能训练服面料的开发[J]. 纺织导报, 2021, (9): 66-68.
LI Zhen, SHI Lingfei, YAN Youjuan, et al. Development of new unidirectional moisture-management fabric for police physical training clothes[J] China Textile Leader, 2021,(9): 66-68.
[8] 罗玫因, 蔡再生. 二重组织混合特殊浸润性织物用于单向导湿的研究[J]. 产业用纺织品, 2020, 38(12): 9-15.
LUO Meiyin, CAI Zaisheng. Study on the application of mixed special wettability fabrics based on backed weave in single-side moisture transportation[J]. Technical Textiles, 2020, 38(12): 9-15.
[9] 陶凤仪, 乔明伟, 王姗姗, 等. 单向导湿机织物的设计及其性能研究[J]. 丝绸, 2021, 58(7): 110-116.
TAO Fengyi, QIAO Mingwei, WANG Shanshan, et al. Study on design and performance of unidirectional woven fabric with moisture conduction function[J]. Journal of Silk, 2021, 58(7): 110-116.
[10] CAO M L, LI K, DONG Z C, et al. Superhydrophobic ″pump″: continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119.
doi: 10.1002/adfm.201501320
[11] WANG H X, DING J, DAI L M, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940.
doi: 10.1039/c0jm02364g
[12] KONG Y Y, LIU Y Y, XIN J H. Fabrics with self-adaptive wettability controlled by ″light-and-dark″[J]. Journal of Materials Chemistry, 2011, 21(44): 17978-17987.
doi: 10.1039/c1jm12516h
[13] LI H Q, HAO X B, GONG J X, et al. Daylight-triggered directional water transport fabric prepared with TiO2 sol-gel method?[J]. Journal of Fiber Bioengineering and Informatics, 2015, 8(4): 733-740.
doi: 10.3993/jfbim00182
[14] ZHU R F, LIU M M, HOU Y Y, et al. Biomimetic fabrication of Janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125.
[15] ZHOU H, WANG H X, NIU H T, et al. Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3(10): 2964.
doi: 10.1038/srep02964
[16] ZHANG C, HE S, WANG D F, et al. Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil-water separation[J]. Journal of Materials Science, 2018, 53(20): 14398-14411.
doi: 10.1007/s10853-018-2659-8
[17] TIAN X L, JIN H, SAINIO J, et al. Droplet and fluid gating by biomimetic Janus membranes[J]. Advanced Functional Materials, 2014, 24(38): 6023-6028.
doi: 10.1002/adfm.201400714
[18] SUN F X, CHEN Z Q, ZHU L C, et al. Directional trans-planar and different in-plane water transfer properties of composite structured bifacial fabrics modified by a facile three-step plasma treatment[J]. Coatings, 2017, 7(8): 132.
doi: 10.3390/coatings7080132
[19] 蒋佩林, 黄晨, 李晶, 等. 壳聚糖/PBT单向导湿非织造材料的制备及性能[J]. 东华大学学报(自然科学版), 2019, 45(3): 339-344.
JIANG Peilin, HUANG Chen, LI Jing, et al. Preparation and properties of chitosan/PBT undirectional water-transfer nonwoven materials[J]. Journal of Donghua University (Natural Science), 2019, 45(3): 339-344.
[20] CLOUPEAU M, PRUNET-FOCH B. Electrostatic spraying of liquids: main functioning modes[J]. Journal of Electrostatics, 1990, 25(2): 165-184.
doi: 10.1016/0304-3886(90)90025-Q
[21] WANG R, LIU H. Surface deposition of chitosan on wool substrate by electrospraying[J]. Advanced Materials Research, 2011, 331: 165-170.
doi: 10.4028/www.scientific.net/AMR.331.165
[22] CARSTOIU J. Fundamental equations of electrom agnetodynamics of fluids: various consequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 1968, 59(2): 326.
pmid: 16591600
[23] CLOUPEAU M, PRUNET-FOCH B. Electrostatic spraying of liquids in cone-jet mode[J]. Journal of Electrostatics, 1989, 22(2): 135-159.
doi: 10.1016/0304-3886(89)90081-8
[24] XU Y H, ZHU Y J, HAN F D, et al. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries[J]. Advanced Energy Materials, 2015. DOI: 10.1002/AENM.201400753
doi: 10.1002/AENM.201400753
[25] 何志聪, 朱丽慧, 黄清伟. CNT/CNP-TiN涂层的高压静电喷涂技术制备及光吸收性能研究[J]. 半导体光电, 2021, 42(5): 698-703.
HE Zhicong, ZHU Lihui, HUANG Qingwei. Fabrication and optical absorption properties of CNT/CNP-TiN coating prepared by high voltage electrostatic spraying technology[J]. Semiconductor Optoelectronics, 2021, 42(5): 698-703.
[26] CHAPARRO A, FERREIRA-APARICIO P, FOLGADO M, et al. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane[J]. Journal of Power Sources, 2011, 196(9): 4200-4208.
doi: 10.1016/j.jpowsour.2010.09.096
[27] CHO Y S, JEONG S, NAM S. Stable dispersion of ITO nanoparticles for self-organization by electrospinning and electrospray[J]. Journal of Dispersion Science and Technology, 2019, 41(13): 1963-1975.
doi: 10.1080/01932691.2019.1645023
[28] LI W L, WANG H P, LI Z X. Hierarchical structure microspheres of PCL block copolymers via electrospraying as coatings for fabric with mechanical durability and self-cleaning ability[J]. Polymers for Advanced Technologies, 2019, 30(9):2321-2330.
doi: 10.1002/pat.4660
[29] 刘承志. 基于粉末涂料制备耐磨超疏水涂层的研究[D]. 南京: 东南大学, 2019: 16-17.
LIU Chengzhi. Research on the preparation of wear-resistant superhydrophobic coatings based on powder paint[D]. Nanjing: Southeast University, 2019: 16-17.
[30] ZENG C, WANG H X, ZHOU H, et al. Directional water transport fabrics with durable ultra-high one-way transport capacity[J]. Advanced Materials Interfaces, 2016. DOI: 10.1002/admi.201600036.
doi: 10.1002/admi.201600036
[31] ZHOU H, WANG H X, NIU H T, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016. DOI: 10.1002/admi.201600283.
doi: 10.1002/admi.201600283
[32] WANG H J, WANG W Y, WANG H, et al. Pore size effect on one-way water-transport cotton fabrics[J]. Applied Surface Science, 2018, 455: 924-930.
doi: 10.1016/j.apsusc.2018.06.007
[33] WANG H J, WANG W Y, WANG H, et al. One-way water transport fabrics with hydrophobic rough surface formed in one-step electrospray[J]. Materials Letters, 2018, 215: 110-113.
doi: 10.1016/j.matlet.2017.12.066
[34] 齐国瑞, 柯勤飞, 李祖安, 等. 纯棉水刺非织造材料的单向导湿无氟整理[J]. 纺织学报, 2019, 40(7): 119-127.
QI Guorui, KE Qinfei, LI Zuan, et al. Single-guide water non-fluorinated finishing of cotton spunlace non-woven materials[J]. Journal of Textile Research, 2019, 40(7): 119-127.
[35] 贾常林. 单向导湿纯棉织物的制备及其吸湿凉爽性能研究[D]. 上海: 东华大学, 2019: 19.
JIA Changlin. Preparation of unidirectional water-transfer cotton fabric and its moisture absorption and coolness property[D]. Shanghai: Donghua University, 2019: 19.
[36] 范追追, 翟世雄, 蔡再生. 高性能单向导湿织物的制备研究[J]. 针织工业, 2021(1): 34-38.
FAN Zhuizhui, ZHAI Shixiong, CAI Zaisheng. Preparation of high-performance one-way moisture-transfer fabrics[J]. Knitting Industries, 2021(1): 34-38.
[37] WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999.
doi: 10.1039/c2sm25514f
[38] WU J, ZHOU H, WANG H X, et al. Novel water harvesting fibrous membranes with directional water transport capability[J]. Advanced Materials Interfaces, 2019. DOI: 10.1002/admj.201801529.
doi: 10.1002/admj.201801529
[39] 曹万宏, 蒙国慧, 贾耀芳. 一种单向导湿全棉复合水刺卫生面层材料的开发[J]. 产业用纺织品, 2020, 38(11): 11-15.
CAO Wanhong, MENG Guohui, JIA Yaofang. Development of a single-side moisture-transferring cotton spunlaced sanitary fabric[J]. Technical Textiles, 2020, 38(11): 11-15.
[40] ZHANG Y, LI T T, REN H T, et al. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning[J]. RSC Advances, 2020, 10(6): 3529-3538.
doi: 10.1039/c9ra06022g pmid: 35497713
[41] YAN W A, MIAO D Y, BABAR A A, et al. Multi-scaled interconnected inter-and intra-fiber porous janus membranes for enhanced directional moisture trans-port[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435.
doi: 10.1016/j.jcis.2020.01.063
[42] 陈鑫. 聚丙烯腈纳米纤维膜制备及功能化应用研究[D]. 合肥: 中国科学技术大学, 2020: 72.
CHEN Xin. Study on preparation and functionalization of polyacrylonitrile nanofibrous membrane[D]. Hefei: Uinversity of Science and Technology of China, 2020: 72.
[43] 齐炜东, 徐孙杰, 许振良, 等. 超疏水PDMS/PVDF纳米纤维膜制备及其苯酚分离性能[J]. 膜科学与技术, 2021, 41(1): 10-15.
QI Weidong, XU Sunjie, XU Zhenliang, et al. Preparation of superhydrophobic PDMS/PVDF nanofiber membrane and its phenol separation performance[J]. Membrane Science and Technology, 2021, 41(1): 10-15.
[44] 曹田田. PAN/PU复合电纺纤维的宏量制备及其防水透湿应用研究[D]. 上海: 东华大学, 2021: 21.
CAO Tiantian. Study on the macro-preparation of PAN/PU composite electrospun fiber and its application as waterproof permeable film[D]. Shanghai: Donghua University, 2021: 21.
[45] XU J H, XIN B J, CHEN Z M, et al. Preparation and characterization of multilayered superfine fibrous mat with the function of directional water transport[J]. RSC Advances, 2019, 9(29): 16754-16766.
doi: 10.1039/C9RA00996E
[46] XU J H, XIN B J, DU X X, et al. Flexible, portable and heatable non-woven fabric with directional moisture transport functions and ultra-fast evaporation[J]. RSC Advances, 2020, 10(46): 27512-27522.
doi: 10.1039/d0ra03867a pmid: 35516954
[47] WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018, 13(2): 1060-1070.
[48] 欧康康, 侯怡君, 吴俊妍, 等. 单向导湿纳米纤维光热膜的制备及废水处理[J]. 印染, 2021, 47(9): 15-18.
OU Kangkang, HOU Yijun, WU Junyan, et al. Preparation of one-way transport nano fiber photothermal membrane and its wastewater treatment[J]. China Dyeing & Finishing, 2021, 47(9): 15-18.
[49] XU J H, XIN B J, WANG C, et al. Tailoring double-layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture trans-port[J]. Journal of Applied Polymer Science, 2020, 137(47): 49530.
doi: 10.1002/app.49530
[50] HE X C, YANG S J, PEI Q B, et al. Integrated smart janus textile bands for self-pumping sweat sampling and analysis[J]. ACS Sensors, 2020, 5(6): 1548-1554.
doi: 10.1021/acssensors.0c00563 pmid: 32466645
[51] HUANG G, XU H D, JIN Y K, et al. Electrospun Janus fabrics with directional water transport property for efficient water collection[J]. Materials Letters, 2021. DOI: 10.1016/j.matlet.2021.1294.24.
doi: 10.1016/j.matlet.2021.1294.24
[52] HUANG G, LIANG Y C, WANG J H, et al. Effect of asymmetric wettability on directional transport of water through Janus fabrics prepared by an electrospinning technique[J]. Materials Letters, 2019, 246: 76-79.
doi: 10.1016/j.matlet.2019.03.011
[53] 梁迎春. Janus织物的制备及单向导湿性能研究[D]. 江门: 五邑大学, 2019:17.
LIANG Yingchun. Preparation of Janus fabric and study on directional water transport performance[D]. Jiangmen: Wuyi University, 2019:17.
[54] BABAR A A, ZHAO X L, WANG X F, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216.
doi: S0021-9797(20)30664-0 pmid: 32480107
[55] WANG H X, ZHOU H, YANG W D, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880.
[56] WANG H X, NIU H T, ZHOU H, et al. Multifunctional directional water transport fabrics with moisture sensing capability[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22878-22884.
[57] XU W S, CHEN Y, LIU Y. Directional water transfer Janus nanofibrous porous membranes for particulate matter filtration and volatile organic compound adsorption[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3109-3118.
[58] 杨玉艳. 具有单向导湿和热传导功能的多层结构空气过滤纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2020:28.
YANG Yuyan. Preparation and performance study of multilayer structured fibrous membrane for air filtration with unidirectional moisture transportability and heat conduction function[D]. Qingdao: Qingdao University, 2020:28.
[1] ZHANG Chudan, WANG Rui, WANG Wenqing, LIU Yanyan, CHEN Rui. Synthesis and properties of cationic modified flame retardant polyester fabrics [J]. Journal of Textile Research, 2022, 43(12): 109-117.
[2] MEI Min, QIAN Jianhua, ZHOU Yukai, YANG Jingjing. Preparation and application of nano-SiO2/fluorine-containing silicon waterproof and moisture-permeable finishing agent [J]. Journal of Textile Research, 2022, 43(12): 118-124.
[3] SONG Jiexin, FU Tianyu, LI Fengming, SONG Rui, LI Yibin. Prediction method for tension of fabric sewn by robot based on extensibility [J]. Journal of Textile Research, 2022, 43(12): 173-180.
[4] CHEN Yushan, JIANG Gaoming, LI Bingxian. Design and 3-D simulation of weft knitted wrap fabric [J]. Journal of Textile Research, 2022, 43(12): 62-68.
[5] FANG Yinchun, CHEN Lüxin, LI Junwei. Preparation and properties of flame retardant and superhydrophobic polyester/cotton fabrics [J]. Journal of Textile Research, 2022, 43(11): 113-118.
[6] YANG Hongying, QI Mengyuan, YANG Zhihui, YANG Yanli, ZHANG Jingjing, XIE Wanzi. Whiteness formulae evaluation of non-fluorescent fabrics by psychophysical experiments [J]. Journal of Textile Research, 2022, 43(11): 119-126.
[7] QIAO Xiran, FANG Kuanjun, LIU Xiuming, GONG Jixian, ZHANG Shuai, ZHANG Min. Different influence of hydroxyethyl methyl cellulose pretreatment on surface properties of cotton and polyamide [J]. Journal of Textile Research, 2022, 43(11): 127-132.
[8] CAO Congcong, TANG Longshi, LIU Yuanjun, ZHAO Xiaoming. Research progress of inorganic antibacterial fabrics [J]. Journal of Textile Research, 2022, 43(11): 203-211.
[9] ZHENG Zhaolun, LU Yujun. Dual-algorithm for fabric defect detection based on singular value decomposition [J]. Journal of Textile Research, 2022, 43(11): 59-67.
[10] SU Ziyue, SHAN Yingfa, WU Yingzhu, QIN Jieyao, PENG Meiting, WANG Xiaomei, HUANG Meilin. Preparation and properties of shape-memory composites reinforced by carbon fabrics [J]. Journal of Textile Research, 2022, 43(11): 75-80.
[11] ZHANG Zhiying, WANG Yiqiu, SUI Jianhua. Study of hollow honeycomb molded composites reinforced by ultra high molecular weight polyethylene fabrics [J]. Journal of Textile Research, 2022, 43(11): 81-87.
[12] FENG Yan, LI Liang, LIU Shuping, LI Shujing, LIU Rangtong. Photocatalytic synergistic efficiency of viscose fabric loaded with nitrogen carbon quantum dots/titanium dioxide [J]. Journal of Textile Research, 2022, 43(10): 112-118.
[13] ZHANG Diandian, YU Mengnan, LI Min, LIU Mingming, FU Shaohai. Preparation and antifouling properties of super-slip cotton fabric based on polymer microspheres grafted with silicone oil [J]. Journal of Textile Research, 2022, 43(10): 119-125.
[14] YU Yangxiao, LI Feng, WANG Yuyu, WANG Shanlong, WANG Jiannan, XU Jianmei. Preparation and properties of polypyrole/silk fibroin conductive nanofiber membranes [J]. Journal of Textile Research, 2022, 43(10): 16-23.
[15] LIU Chengxia, ZHANG Yaqi. New measurement method for fabric multi-directional bending performance [J]. Journal of Textile Research, 2022, 43(10): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 107 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(01): 1 -9 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 101 -102 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 103 -104 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 108 -110 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 111 -113 .