Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (12): 173-180.doi: 10.13475/j.fzxb.20210805708

• Machinery & Accessories • Previous Articles     Next Articles

Prediction method for tension of fabric sewn by robot based on extensibility

SONG Jiexin1,2, FU Tianyu1,2, LI Fengming1,2, SONG Rui1,2(), LI Yibin1,2   

  1. 1. School of Control Science and Engineering, Shandong University, Ji'nan, Shandong 250100, China
    2. Engineering Research Center of Ministry of Education for Intelligent Unmanned Systems, Shandong University, Ji'nan, Shandong 250100, China
  • Received:2021-08-12 Revised:2022-07-23 Online:2022-12-15 Published:2023-01-06
  • Contact: SONG Rui E-mail:rsong@sdu.edu.cn

Abstract:

In order to better understand the effect the sewing tension on fabric sewing flatness in the robotic sewing process, the support vector machine (SVM) model was trained according to the extensibility of the fabric, and the extensibility of a new fabric was predicted by the linear SVM model. A fuzzy logic control system was used to determine the nonlinear relationship between the cloth characteristics and the applied tension. The SVM model was tested with four fabrics, i.e., wool, silk, velvet, and flannel, among which silk was selected to output the expected tension of the fabric through fuzzy logic relations. The results show that in the process of fabric stretching, the extensibility predicted by the linear SVM model eventually tends to converge towards the actual extensibility of the fabric. Based on fuzzy logic, the expected tension of any fabric can be predicted according to the extensibility and fabric type. This research provides a prerequisite for avoiding fabric deformation and improving sewing quality.

Key words: industrial robot, fabric sewing, extensibility, expected tension, fuzzy control

CLC Number: 

  • TP242.2

Fig.1

Diagram of expected tension prediction method based on fabric extensibility"

Tab.1

Expected tension control rule table"

面料种类T 面料延展性E 面料期望张力 F q
非常低 非常低
非常低
中等
中等
非常高
中等 非常低
中等
中等 中等 中等
中等
中等 非常高 非常高
非常低 中等
中等
中等
非常高
非常高 非常高

Fig.2

Membership function graph. (a) Extensibility E of fabric; (b) Type T of fabric; (c) Expected tension Fq of fabric"

Fig.3

Experimental platform diagram"

Fig.4

Force data graph of slub cotton linen"

Fig.5

S-F curve"

Fig.6

ROC curves of different kernel functions. (a) Sigmoid kernel function; (b) Rbf kernel function; (c) Linear kernel function"

Fig.7

SVM prediction map of fabric extensibility"

Fig.8

Deblurring diagram of expected tension center of gravity"

Tab.2

Expected tension control rule table"

面料种类T 面料延展性E 面料期望张力 F q
0.2 0.2 0.199
0.2 0.4 0.293
0.2 0.6 0.466
0.2 0.8 0.642
0.4 0.2 0.256
0.4 0.4 0.358
0.4 0.6 0.534
0.4 0.8 0.707
0.6 0.2 0.371
0.6 0.4 0.466
0.6 0.6 0.642
0.6 0.8 0.774
0.8 0.2 0.429
0.8 0.4 0.534
0.8 0.6 0.707
0.8 0.8 0.801

Fig.9

Wool sewing tension chart"

Fig.10

Stitch diagram for wool sewing with tension equal to, greater than, and less than desired tension"

Fig.11

Slub cotton and linen sewing tension diagram"

Fig.12

Stitch diagram for slub cotton and linen sewing with tension equal to, greater than, and less than desired tension"

[1] NAYAK R, PADHYE R. Introduction to automation in garment manufacturing[M]. Sawston, Cambridge: Woodhead Publishing, 2018:2-8.
[2] 刘国江. 立体缝制关键技术研究[D]. 西安: 西安理工学, 2019:2-20.
LIU Guojiang. Research on the key technology of three-dimensional sewing[D]. Xi'an: Xi'an University of Technology, 2019:2-20.
[3] 平丽华. 扣眼缝制机器人视觉引导系统研制[D]. 西安: 西安工程大学, 2019:4-18.
PING Lihua. Development of the vision guidance system of buttonhole sewing robot[D]. Xi'an: Xi'an Polytechnic University, 2019:4-18.
[4] GERSHON D. Strategies for robotic handling of flexible sheet material[J]. Mechatronics, 1993, 3(5):611-623.
doi: 10.1016/0957-4158(93)90027-Y
[5] TORGERSON E, PAUL F. Vision guided robotic fabric manipulation for apparel manufacturing[C]// 1987 IEEE International Conference on Robotics and Automation. Raleigh, NC, USA: IEEE, 1987:14-20.
[6] PARASKEVI Z. Robot handling fabrics towards sewing using computational intelligence methods[M]. MANILA, Philippines: InTech, 2012:3-20.
[7] 杨一帆. 基于阻抗控制的弱刚性构件双机器人协同磨抛技术研究[D]. 武汉: 华中科技大学, 2019:5-21.
YANG Yifan. Research on cooperative grinding and polish ing technology of two robots for weakly rigid compo nents based on impedance control[D]. Wuhan: Huazhong University of Science and Technology, 2019:5-21.
[8] SARHADI M. Robotic handling and lay-up of advanced composite materials: an overview[M]. Berlin Heidelberg: Springer, 1990:8-19.
[9] ZENG G, HEMAMI A. An overview of robot force control[J]. Robotica, 1997, 15(5):473-482.
doi: 10.1017/S026357479700057X
[10] SICILIANO B, VILLANI L. Robot force control[M]. New York: Springer New York, NY, 1999:7-22.
[11] WOGERER C, NITTMANN G, TATZER P. Intelligent manipulation of non-rigid parts in industry applicati-ons[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, CA, USA: IEEE, 2005:1120-1126.
[12] FUNG E, YUEN C, HAU L C, et al.. A robot system for the control of fabric tension for inspection[C]// ASME International Mechanical Engineering Congress and Exposition. Seattle, Washington, USA: ASME, 2007:813-819.
[13] PATTON R, SWERN F, TRICAMO S, et al. Automated cloth handling using adaptive force feedback[J]. Dynamic Systems Measurement and Control-transactions of the Asme, 1992, 114(4):731-733.
[14] SCHRIMPF J, WETTERWALD L E. Experiments towards auto mated sewing with a multi-robot sys-tem[C]// IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012:5258-5263.
[15] GERSHON D, PORAT I. Vision servo control of a robotic sewing system[C]// IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA: IEEE, 1988:1830-1935.
[16] SCHRIMPF J, WETTERWALD L E, LIND M. Real-time system integration in a multi-robot sewing cell[C]// IEEE/RSJ International Conference on Intelligent Robots andSystems.VilamouraAlgarve, Portugal:IEEE, 2012:2724-2729.
[17] KOUSTOUMPARDIS P N, ASPRAGATHOS N A. Intelligent hierarchical robot control for sewing fabrics[J]. Robotics and Computer Integrated Manufacturing, 2014, 30(1):34-46.
doi: 10.1016/j.rcim.2013.08.001
[18] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2017:121-145.
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2017:121-145.
[19] PARASURAMAN S, GANAPATHY V, SHIRINZADEH B. Fuzzy decision mechanism combined with neuro-fuzzy controller for behavior based robot navigation[C]// Conference of the IEEE Industrial Electronics Socity.Roanoke, VA, USA: IEEE, 2003:2410-2416.
[20] 李国勇, 杨丽娟. 神经·模糊·预测控制及其MatLab实现[M]. 北京: 电子工业出版社, 2018:206-217.
LI Guoyong, YANG Lijuan. Neural fuzzy predictive control and its matlab implementation[M]. Beijing: Electronic Industry Press, 2018:206-217.
[1] WU Liubo, LI Xinrong, DU Jinli. Research progress of motion trajectory planning of sewing robot based on contour extraction [J]. Journal of Textile Research, 2021, 42(04): 191-200.
[2] LIU Lidong, LI Xinrong, LIU Hanbang, LI Dandan. Electrostatic adsorption model based on characteristics of weft knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 161-168.
[3] . Influence of intertexture on construction and elasticity of seamless underwear fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(8): 42-0.
[4] XU Li-Ping. Factors influencing extensibility  of knitted piping around collar [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(2): 94-97.
[5] WANG Hongkai;ZHANG Senlin. Design of the software system of automatic flat knitting machine based on Linux embedded technology [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(2): 101-105.
[6] LI Ge;MEI Jing;ZHAO Yun;PAN Hai-peng. Fuzzy self-adjusting PID controller for affixture machine tension control [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(6): 41-43.
[7] LI Wei;ZHU Xin-jian;WEI Peng-xiao. Fuzzy control of the leveling control system based on the least square method [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 37-40.
[8] LI Wei-feng;ZHANG Yi-feng. Application of single-chip processor based fuzzy speed control in scutcher [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(10): 99-101.
[9] QU Wen-tai;ZHANG Sen-lin. Multivariable fuzzy control technology of heat setting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(4): 79-82.
[10] YAO Jie;YE Guo-ming. Analysis and design of new-type open-loop autoleveller of drawing frame [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(3): 44-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!