Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (07): 116-125.doi: 10.13475/j.fzxb.20220301701
• Textile Engineering • Previous Articles Next Articles
CHEN Lu1, WU Mengjin1, JIA Lixia1,2, YAN Ruosi1,2()
CLC Number:
[1] |
CHHETRI S, BOUGHERARA H. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties[J]. Composites Part A:Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2020.106146.
doi: 10.1016/j.compositesa.2020.106146 |
[2] |
YAN R, ZHANG Q, SHI B, et al. Investigation on low-velocity impact and interfacial bonding properties of weft-knitted UHMWPE reinforced composites[J]. Journal of Industrial Textiles, 2020. DOI:10.1177/1528083720931474.
doi: 10.1177/1528083720931474 |
[3] |
CAI T, ZHAN S, YANG T, et al. Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication[J]. Tribology International, 2022. DOI:10.1016/j.triboint.2021.107419.
doi: 10.1016/j.triboint.2021.107419 |
[4] |
FANG Z, TU Q, SHEN X, et al. Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles[J]. Surfaces and Interfaces, 2022. DOI:10.1016/j.surfin.2022.101728.
doi: 10.1016/j.surfin.2022.101728 |
[5] |
CHHETRI S, SARWAR A, STEER J, et al. Design of a bi-layer coating configuration on ultra-high molecular weight polyethylene (UHMWPE) fibre surface to derive synergistic response on interfacial bond strength[J]. Composites Part A: Applied Science and Manufacturing, 2022. DOI:10.1016/j.compositesa.2021.106678.
doi: 10.1016/j.compositesa.2021.106678 |
[6] | 贾彩霞, 王乾, 任荣, 等. 超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J]. 复合材料学报, 2020, 37(3): 573-580. |
JIA Caixia, WANG Qian, REN Rong, et al. Ultra-high molecular weight polyethylene (UHMWPE) fibre effect mechanism of surface treatment on interfacial properties of UHMWPE/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 573-580. | |
[7] | 吴孟锦. 氧等离子体改性UHMWPE复合材料的界面及力学性能研究[D]. 石家庄: 河北科技大学, 2021: 23-34. |
WU Mengjin. Interfacial and mechanical properties of oxygen plasma-modified UHMWPE reinforced composites[D]. Shijiazhuang: Hebei University of Science and Technology, 2021: 23-34. | |
[8] |
WU M, JIAIA L, LU S, et al. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: a review[J]. Surfaces and Interfaces, 2021. DOI:10.1016/j.surfin.2021.101077.
doi: 10.1016/j.surfin.2021.101077 |
[9] | 杜晓冬, 林芳兵, 蒋金华, 等. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(9): 22-27. |
DU Xiaodong, LIN Fangbing, JIANG Jinhua, et al. Effect of oxygen plasma modification on surface properties of polyimide fiber[J]. Journal of Textile Research, 2019, 40(9): 22-27. | |
[10] |
ZHAN W, CAO Y, YANG P, et al. Manufacturing and interfacial bonding behavior of plasma-treated-carbon fiber reinforced veneer-based composites[J]. Composite Structures, 2019. DOI:10.1016/j.compstruct.2019.111203.
doi: 10.1016/j.compstruct.2019.111203 |
[11] | RODRIGUES M M, FONTOURA C P, GARCIA C S C, et al. Investigation of plasma treatment on UHMWPE surfaces: impact on physicochemical properties, sterilization and fibroblastic adhesion[J]. Material Science & Engineering C, 2019, 102: 264-275. |
[12] |
KOSTAGIANNAKOPOULOU C, LOUTAST H, SOTIRIADIS G, et al. On the interlaminar fracture toughness of carbon fiber composites enhanced with graphene nano-species[J]. Composites Science and Technology, 2015, 118: 217-225.
doi: 10.1016/j.compscitech.2015.08.017 |
[13] |
SAEEDIFAR M, FOTOUHI M, NAJAFABADI M A, et al. Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission[J]. Composites Part B: Engineering, 2016, 85: 113-122.
doi: 10.1016/j.compositesb.2015.09.037 |
[14] | 张燕南, 周伟, 商雅静, 等. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(8): 55-63. |
ZHANG Yannan, ZHOU Wei, SHANG Yajing, et al. Measurement of tensile microdeformation and acoustic emission monitoring of damage and failure of three-dimensional braided composites[J]. Journal of Textile Research, 2019, 40(8): 55-63. | |
[15] |
ZHANG Y, ZHOU B, YU F, et al. Class analysis of acoustic emission signals and infrared thermography for defect evolution analysis of glass/epoxy composites[J]. Infrared Physics & Technolgy, 2021. DOI:10.1016/j.infrared.2020.103581.
doi: 10.1016/j.infrared.2020.103581 |
[16] | 王旭, 晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31 (3): 27-31. |
WANG Xu, YAN Xiong. Acoustic emission characteristics of damage behavior of polyethylene self-reinforced composites[J]. Journal of Textile Research, 2010, 31 (3): 27-31. | |
[17] |
JIANG Y, LI J, LIU F, et al. The effects of surface modification using O2 low temperature plasma on chrome tanning properties of natural leather[J]. Journal of Industrial Textiles, 2019, 49(4): 534-547.
doi: 10.1177/1528083718804205 |
[18] |
SHELLY D, NANDA T, MEHTA R. Addition of compatibilized nanoclay and UHMWPE fibers to epoxy based GFRPs for improved mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106371.
doi: 10.1016/j.compositesa.2021.106371 |
[19] |
OZASLAN E, YETGIN A, ACAR B, et al. Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods[J]. Composite Structures, 2021. DOI:10.1016/j.compstruct.2021.114299.
doi: 10.1016/j.compstruct.2021.114299 |
[20] |
RAMIREZ J, HALM D, GRANDIDIER J. Assessment of a damage model for wound composite structures by acoustic emission[J]. Composite Structures, 2019, 214: 414-421.
doi: 10.1016/j.compstruct.2019.01.093 |
[21] |
BARILE C, CASAVOLA C, PAPPALETTERA G, et al. Damage characterization in composite materials using acoustic emission signal-based and parameter-based data[J]. Composite Part B: Engineering, 2019. DOI:10.1016/j.compositesb.2019.107469.
doi: 10.1016/j.compositesb.2019.107469 |
[22] |
MOHAMMADI R, NAJAFABADI M A, SAGHAFI H, et al. A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission[J]. Composite Structures, 2021. DOI: 10.1016/j.compstruct.2020.113395.
doi: 10.1016/j.compstruct.2020.113395 |
[1] | DUAN Chenghong, WU Gangben, LUO Xiangpeng. Mechanical properties of carbon fiber reinforced epoxy resin woven composites based on DIGIMAT [J]. Journal of Textile Research, 2023, 44(07): 126-131. |
[2] | LIU Dunlei, LU Jiaying, XUE Tiantian, FAN Wei, LIU Tianxi. Preparation and properties of superhydrophobic thermal insulating polyester nanofiber/silica aerogel composite membranes [J]. Journal of Textile Research, 2023, 44(07): 18-25. |
[3] | YANG Jin, LI Qiyang, JI Xia, SUN Yize. Modeling and control strategy of composite braiding-winding-pultrusion system [J]. Journal of Textile Research, 2023, 44(07): 199-206. |
[4] | LI Jiao, CHEN Li, YAO Tianlei, CHEN Xiaoming. Design of needling robot system for quasi-rotary preforms [J]. Journal of Textile Research, 2023, 44(07): 207-213. |
[5] | XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9. |
[6] | XU Ruidong, LIU Hong, WANG Hang, ZHU Shifeng, QU Lijun, TIAN Mingwei. Construction and strain sensing properties of an ionic hydrogel composite fabric [J]. Journal of Textile Research, 2023, 44(06): 137-143. |
[7] | WANG Qinghong, WANG Ying, HAO Xinmin, GUO Yafei, WANG Meihui. Processing optimization of composite fabrics deposited with electrospinning polyamide nano-fibers [J]. Journal of Textile Research, 2023, 44(06): 144-151. |
[8] | LÜ Junwei, LUO Longbo, LIU Xiangyang. Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination [J]. Journal of Textile Research, 2023, 44(06): 21-27. |
[9] | FU Chiyu, XU Ao, QI Shuo, WANG Kai, MIAO Ying, SHANG Lulu, XIA Zhigang. Shape memory alloy composite yarn and its fabric actuation performance [J]. Journal of Textile Research, 2023, 44(06): 91-97. |
[10] | WEI Yuhui, ZHENG Chen, CHENG Erxiao, ZHAO Shuhan, SU Zhaowei. Preparation and properties of photocatalytic self-cleaning aramid fabrics [J]. Journal of Textile Research, 2023, 44(05): 171-176. |
[11] | DI Chunqiu, GUO Jing, GUAN Fucheng, XIANG Yulong, SHAN Jicheng. Preparation and characterization of phase change fibers of bimetal ion crosslinked alginate composites [J]. Journal of Textile Research, 2023, 44(05): 54-62. |
[12] | HU Diefei, WANG Yan, YAO Juming, DAS Ripon, MILITKY Jiri, VENKATARAMAN Mohanapriya, ZHU Guocheng. Study on performance of nanofiber air filter materials [J]. Journal of Textile Research, 2023, 44(05): 77-83. |
[13] | ZHANG Shaoyue, YUE Jiangyu, YANG Jiale, CHAI Xiaoshuai, FENG Zengguo, ZHANG Aiying. Preparation and properties of eco-friendly polycaprolactone-based composite phase change fibrous membranes [J]. Journal of Textile Research, 2023, 44(03): 11-18. |
[14] | ZHOU Linghui, ZENG Pei, LU Yao, FU Shaoju. Study on composite acoustic material of polyvinyl alcohol nanofiber membrane and Milano rib knit fabric [J]. Journal of Textile Research, 2023, 44(03): 73-78. |
[15] | LIU Dongyan, ZHENG Chengyan, WANG Xiaoxu, QIAN Kun, ZHANG Diantang. Projectile penetration mechanism of ultra-high molecular weight polyethylene fabric/polyurea flexible composites [J]. Journal of Textile Research, 2023, 44(03): 79-87. |
|