Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (08): 205-216.doi: 10.13475/j.fzxb.20220305802

• Comprehensive Review • Previous Articles     Next Articles

Current status and prospect of intelligent development in textile industry

ZHENG Xiaohu1,2(), LIU Zhenghao3, CHEN Feng4, ZHANG Jie1,2, WANG Junliang1,2   

  1. 1. Institute of Artificial Intelligence,Donghua University, Shanghai 201620, China
    2. Shanghai Industrial Big Data and Intelligent Systems Engineering Technology Center, Shanghai 201620, China
    3. College of Mechanical Engineering,Donghua University, Shanghai 201620, China
    4. Jingwei Textile Machinery Co., Ltd., Beijing 100176, China
  • Received:2022-03-17 Revised:2022-11-01 Online:2023-08-15 Published:2023-09-21

Abstract:

Significance With the start of a new round of technological revolution and industrial advancement, China's textile industry has stepped into a new stage of high-quality development. This paper provides a comprehensive overview of the development and application of artificial intelligence technology in the textile industry and explores the tasks and goals of future intelligent development. Based on the latest global developments in digitalization, networking, and intelligence in the textile industry, it analysed the current technical challenges and summarised the key technologies urgently needed in the textile industry. Typical application cases and production models were introduced such as whole-process intelligent textile production lines, intelligent operation and maintenance of textile equipment, and intelligent textile testing. The core technological challenges facing the Chinese textile industry and the development directions of the industrial ecology were to be reviewed. Ideas on developing a new generation of textile-intelligent manufacturing systems and creating an intelligent textile ecology with the collaboration of the whole industrial chain were presented.

Progress At this stage, the Chinese textile industry intelligent manufacturing is in a critical period of digital, networked, and intelligent development (Fig. 1). The critical technologies related to the intelligence of the textile industry are developing rapidly, and big-data technology for the whole textile production process is being applied rapidly (Fig. 2). Digital-twin technology in the textile industry is applied to intelligent garment design and intelligent textile factories (Fig. 3 and Fig. 4). As automated equipment replaces manual labor in typical textile processes, robots in the textile industry have become an essential part of intelligent production. Machine vision technology based on deep learning plays a role in the intelligent control of textile equipment and intelligent inspection of textile quality scenarios (Fig. 5). Intelligent scheduling technology based on machine learning effectively improves the production efficiency of textile enterprises. Based on these technologies, typical examples of intelligent applications in the textile industry have emerged. A data-driven intelligent operation and maintenance system for high-speed winders (Fig. 6), enables data-based intelligent fault diagnosis and remaining life prediction of equipment. The "edge-cloud" collaborative fabric defect detection system enables the detection and identification of a wide range of fabric defects. Xinfengming Group realizes the intelligence of the whole production chain based on 5G and product identification resolution technology (Fig. 7). Wuhan Yudahua's 100000-spindle full-process intelligent spinning line solves the discontinuity problem between some of the ring spinning processes, with an automation rate of over 95% (Fig. 8).

Conclusion and Prospect China's textile industry has made a breakthrough in digitalizing equipment, networking, and workshop intelligence. Significant progress has been made in improving quality and efficiency and optimizing the industrial structure. However, a series of standards system for intelligent manufacturing in the textile industry has yet to be established. In the field of cotton spinning, for example, there are still breakpoints in the automated production of the whole process. The quality traceability of the whole process of product production needs to be strengthened. Data processing and other software are primarily selected from general software developed by information technology developers, which is challenging to meet the precise professional needs of spinning enterprises. The core equipment and industrial software in the field of textiles have not yet formed the technical support capacity, from the true meaning of "intelligent" still has a large gap. The intelligent textile ecology of the whole industrial chain needs to be established. Developing a new generation of intelligent textile manufacturing systems should be based on the study of intelligent textile process, intelligent textile equipment as the focus of development, and intelligent equipment collaboration as the core. At the same time, through the construction of a textile innovative factory demonstration production model, the development of critical technologies of the textile industry Internet, the construction of a blockchain-based networked collaborative rapid response service system, the creation of the whole industry chain collaborative textile intelligent ecology, improve the rapid response service capacity, to achieve the development of the textile industry multi-cluster synergy.

Key words: textile industry, textile intelligence, textile intelligent factory, smart manufacturing, industrial intern

CLC Number: 

  • TP18

Fig. 1

Status quo of intelligent development of textile industry"

Fig. 2

Textile big data application mode"

Fig. 3

Clothing design technology based on digital-twins"

Fig. 4

Spinning smart factory reference model based on digital-twin technology"

Fig. 5

Application of machine vision in textile sector"

Fig. 6

Fabric defect detection system based on machine vision"

Fig. 7

Xin Fengming group 5G intelligent monitoring robot"

Fig. 8

Yu Dahua Group intelligent spinning management system"

Fig. 9

Prospects for intelligent development of textile industry"

[1] 中国纺织工业联合会. 纺织行业“十四五”发展纲要[J]. 纺织科学研究, 2021 (7): 40-49.
China National Textile and Apparel Council. Development outline of textile industry in the 14th five year plan[J]. Textile Science Research, 2021 (7): 40-49.
[2] 程醉. 后疫情时代, 我国纺织服装行业如何转型升级?[J]. 中国纤检, 2021 (7): 110-113.
CHENG Zui. How to transform and upgrade China's textile and garment industry in the post-epidemic era?[J]. China Fiber Inspection, 2021 (7): 110-113.
[3] 黄倩倩, 张建纲, 高东辉, 等. 智能纺机专利布局的大国策略[J]. 纺织科学研究, 2021 (7): 50-53.
HUANG Qianqian, ZHANG Jiangang, GAO Donghui, et al. Great power strategy for patent layout of intelligent textile machinery[J]. Textile Science Research, 2021(7): 50-53.
[4] 张贵东. 纺织业“两化融合”水平跃升[N]. 中国纺织报,2023-03-22(1).
ZHANG Guidong. The level of "integration of industrialization and industrialization" in the textile industry has jumped[N]. CHINA TEXTILE NEWS,2023-03-22(1).
[5] 周亚勤, 汪俊亮, 鲍劲松, 等. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40 (4): 145-151.
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Research and implementation of standard system architecture of textile intelligent manufacturing[J]. Journal of Textile Research, 2019, 40 (4): 145-151.
[6] 程隆棣, 张洁, 张红霞, 等. 棉纺智能化纺纱关键技术刍议[J]. 纺织导报, 2021 (6): 48,50-53.
CHENG Longdi, ZHANG Jie, ZHANG Hongxia, et al. Discussion on the key technology of intelligent cotton spinning[J]. China Textile Leader, 2021 (6): 48,50-53.
[7] TAO F, QI Q, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48: 157-169.
[8] WAN J, TANG S, LI D, et al. A manufacturing big data solution for active preventive maintenance[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2039-2047.
doi: 10.1109/TII.2017.2670505
[9] 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38 (10): 159-165.
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven framework for intelligent textile manufacturing[J]. Journal of Textile Research, 2017, 38 (10): 159-165.
[10] 万雷. 我国化纤行业智能制造发展现状及展望[J]. 合成纤维工业, 2018, 41 (6): 36-41.
WAN Lei. Intelligent manufacturing development status and trend of China chemical fiber industry[J]. China Synthetic Fiber Industry, 2018, 41 (6): 36-41.
[11] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(4): 203-209.
LEI Ge, LI Xiaohui. Review of digital pattern-making technology in garment production[J]. Journal of Textile Research, 2022, 43(4): 203-209.
[12] 王春茹, 袁月, 曹晓梦, 等. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(3): 153-159.
WANG Chunru, YUAN Yue, CAO Xiaomeng, et al. Influence of structural parameters of stand collar on clothing styling[J]. Journal of Textile Research, 2022, 43(3): 153-159.
[13] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(6): 125-131.
XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine[J]. Journal of Textile Research, 2020, 41(6): 125-131.
[14] 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(9): 144-149.
LI Bowen, WANG Ping, LIU Yuye. 3-D virtual try-on technique based on dynamic feature of body postures[J]. Journal of Textile Research, 2021, 42(9): 144-149.
[15] 江红霞, 黄智威, 刘基宏. 基于模块化划分的旗袍虚拟展示[J]. 纺织学报, 2021, 42(5): 138-142.
JIANG Hongxia, HUANG Zhiwei, LIU Jihong. Virtual display of cheongsam based on modularization[J]. Journal of Textile Research, 2021, 42(5): 138-142.
[16] 张淑芳, 王沁宇. 基于生成对抗网络的虚拟试穿方法[J]. 天津大学学报 (自然科学与工程技术版), 2021(9): 925-933.
ZHANG Shufang, WANG Qinyu. Generative-adversarial-network-based virtual try-on method[J]. Journal of Tianjin University (Science and Technology), 2021(9): 925-933.
[17] 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(1): 133-137.
JI Yanbo, WANG Lingli, LIU Kaixuan. Custom design of cheongsam based on digital 3-D human model[J]. Journal of Textile Research, 2021, 42(1): 133-137.
[18] LU Y, LIU C, WANG K I K, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61(C): 101837-101837.
[19] WANG P, LUO M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing[J]. Journal of Manufacturing Systems, 2021, 58: 16-32.
doi: 10.1016/j.jmsy.2020.11.012
[20] QI Q, TAO F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593.
doi: 10.1109/ACCESS.2018.2793265
[21] 武臣, 薛元, 徐志武, 等. 纺纱过程的数字孪生技术及其智能控制模式实践[J]. 毛纺科技, 2021, 49(8): 82-90.
WU Chen, XUE Yuan, XU Zhiwu, et al. Digital twinning technology of spinning process and practice of its intelligent control mode[J]. Wool Textile Journal, 2021, 49 (8): 82-90.
[22] 徐慧, 邹孝付, 王海天, 等. 基于数字孪生的化纤长丝落卷作业优化方法及验证[J/OL]. 计算机集成制造系统, 2022(6):1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html.
XU Hui, ZOU Xiaofu, WANG Haitian, et al. Optimization method and justification of chemical fiber filament doffing operation based on digital twin[J/OL]. Computer Integrated Manufacturing Systems, 2022(6): 1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html.
[23] 郑小虎, 张洁. 数字孪生技术在纺织智能工厂中的应用探索[J]. 纺织导报, 2019 (3): 37-41.
ZHENG Xiaohu, ZHANG Jie. Application of digital twin technology in textile intelligent factory[J]. China Textile Leader, 2019 (3): 37-41.
[24] 郭明瑞, 韩晨晨, 卢雨正, 等. 浅谈纺纱流程智能化发展的现状[J]. 棉纺织技术, 2020, 48 (5): 81-84.
GUO Mingrui, HAN Chenchen, LU Yuzheng, et al. Disscussion of spinning process intelligent development status[J]. Cotton Textile Technology, 2020, 48 (5): 81-84.
[25] 冯英杰, 蒋高明, 彭佳佳. 人工智能引领纺织行业创新发展[J]. 现代纺织技术, 2021, 29 (3): 71-77.
FENG Yingjie, JIANG Gaoming, PENG Jiajia. Innovation and development of textile industry under guidance of artificial intelligence[J]. Advanced Textile Technology, 2021, 29 (3): 71-77.
[26] PYKA W, JEDRZEJOWSKI M, CHUDY M, et al. On the use of textile materials in robotics[J]. Journal of Engineered Fibers and Fabrics, 2020. doi.org/10.1177/1558925020910725.
[27] SANCHEZ V, WALSH C J, WOOD R J. Textile technology for soft robotic and autonomous garments[J]. Advanced Functional Materials, 2020. https://doi.org/10.1002/adfm.202008278.
[28] 熊安迪. SRT软体机器人:给机器人装上灵巧、柔软的“手”[J]. 机器人产业, 2021 (1): 107-112.
XIONG Andi. SRT software robot: equip the robot with dexterous and soft "hands"[J]. Robot Industry, 2021(1): 107-112.
[29] 李为华, 裴翔, 方政, 等. 印花机自动取放料系统: 207046527U[P].2018-02-27.
LI Weihua, PEI Xiang, FANG Zheng, et al. Automatic material taking and discharging system of printing machine: 207046527U[P]. 2018-02-27.
[30] 吉学齐. 浅议智慧型织造工厂生产模式[J]. 棉纺织技术, 2020, 48 (6): 75-78.
JI Xueqi. Discussion on production mode of intelligent weaving factory[J]. Cotton Textile Technology, 2020, 48 (6): 75-78.
[31] 杨华明, 齐泽京, 梅顺齐. 全流程数字化智能化纺纱装备的开发与实践[J]. 纺织科学研究, 2021 (6): 38-40.
YANG Huaming, QI Zejing, MEI Shunqi, et al. Development and practice of whole process digital and intelligent spinning equipment[J]. Textile Science Research, 2021 (6): 38-40.
[32] 管锦文, 徐旻. 棉纺数字化车间及其智能化特点[J]. 棉纺织技术, 2016, 44 (10): 80-84.
GUAN Jinwen, XU Min. Cotton spinning digital workshop and its intelligentization characteristics[J]. Cotton Textile Technology, 2016, 44 (10): 80-84.
[33] 宋富佳. 康平纳开启筒子纱数字化自动染色新时代[J]. 纺织导报, 2012 (12): 95.
SONG Fujia. Kangpina opens a new era of digital automatic dyeing of bobbin yarn[J]. China Textile Leader, 2012 (12): 95.
[34] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48 (1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48 (1): 28-33.
[35] 王士合. 传统纺纱设备智能化升级改造思路探讨[J]. 棉纺织技术, 2020, 48 (7): 52-55.
WANG Shihe. Discussion on intelligent upgrade and transformation idea of traditional spinning equip-ment[J]. Cotton Textile Technology, 2020, 48(7): 52-55.
[36] 王蕾, 潘如如, 周建, 等. 机器视觉在纺织智能化中的应用进展[J]. 棉纺织技术, 2021, 49(11):9-11.
WANG Lei, PAN Ruru, ZHOU Jian, et al. Application progress of machine vision in textile intellectua-lization[J]. Cotton Textile Technology, 2021, 49(11):9-11.
[37] 肖琦. 纺织品的人工智能检测技术分析[J]. 化纤与纺织技术, 2021, 50 (3): 83-85.
XIAO Qi. Analysis of artificial intelligence detection technology of textiles[J]. Chemical Fiber & Textile Technology, 2021, 50 (3): 83-85.
[38] 吴霭弟, 何伟坚. 纺织品的人工智能检测技术[J]. 化纤与纺织技术, 2020, 49 (1): 38-42.
WU Aidi, HE Weijian. Textile detection based on artificial intelligence[J]. Chemical Fiber & Textile Technology, 2020, 49 (1): 38-42.
[39] ZHAO S, YIN L, ZHANG J, et al. Real-time fabric defect detection based on multi-scale convolutional neural network[J]. IET Collaborative Intelligent Manufacturing, 2020, 2 (4): 189-196.
doi: 10.1049/cim2.v2.4
[40] JING J, HUANG M, LI P, et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018, 109 (6): 740-749.
doi: 10.1080/00405000.2017.1368106
[41] 晏琳, 景军锋, 李鹏飞. Faster RCNN模型在坯布疵点检测中的应用[J]. 棉纺织技术, 2019, 47(2): 24-27.
YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN mold used in gray fabric defect detection[J]. Cotton Textile Technology, 2019, 47(2): 24-27.
[42] 张缓缓, 马金秀, 景军锋, 等. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40 (12): 50-56.
ZHANG Huanhuan, MA Jinxiu, JING Junfeng, et al. Fabric defect detection method based on improved fast weighted median filtering and K-means[J]. Journal of Textile Research, 2019, 40 (12): 50-56.
[43] 宇宏达, 吴丽莉, 陈廷. 群体智能算法在纺织领域的应用[J]. 纺织导报, 2021 (1): 93-96.
YU Hongda, WU Lili, CHEN Tin. Applications of swarm intelligence algorithm in textiles[J]. China Textile Leader, 2021 (1): 93-96.
[44] 周亚勤, 汪俊亮, 鲍劲松, 等. 针织生产智能管控的通用数据模型研究[J]. 中国机械工程, 2019, 30(2): 143-148, 219.
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Study on general data models for intelligent control of knitting production[J]. China Mechanical Engineering, 2019, 30 (2): 143-148,219.
[45] 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6): 36-41.
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41(6): 36-41.
[46] 蔡飞飞, 郗欣甫, 沈瑞超, 等. 经编车间过程监控与生产调度[J]. 东华大学学报(自然科学版), 2020, 46(6): 952-958.
CAI Feifei, XI Xinfu, SHEN Ruichao, et al. Process monitoring and production scheduling for warp knitting workshop[J]. Journal of Donghua University(Natural Science), 2020, 46 (6): 952-958.
[47] 沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4): 74-83.
SHEN Chunya, LEI Junjie, RU Xin, et al. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII[J]. Journal of Textile Research, 2022, 43(4): 74-83.
doi: 10.1177/004051757304300203
[48] 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J/OL]. 计算机工程与应用, 2022.[2022-06-08]. http://kns.cnki.net/kcms/detail/11.21 27.TP.20220530.1813.008.html.
DU Lizhen, WANG Yuhao, YI Zifeng, et al. Research on knitted production line scheduling based on improved simulated annealing algorithm[J/OL]. Computer Engineering and Applications, 2022. [2022-06-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220530.1813.008.html.
[49] 胡小荣, 邹鲲. 全自动筒子纱印染线天轨机器人调度策略研究[J]. 制造业自动化, 2020, 42 (11): 1-5, 10.
HU Xiaorong, ZOU Kun. Research on scheduling strategy of automatic creel robot for bobbin yarn printing and dyeing line[J]. Manufacturing Automation, 2020, 42 (11): 1-5, 10.
[50] 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J]. 计算机集成制造系统, 2023, 29(1):61-74.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J/OL]. Computer Integrated Manufacturing Systems, 2023, 29(1):61-74.
[51] 石梓琪. 数据驱动的卷绕机卡头健康状态趋势预测方法[D]. 上海: 东华大学, 2022:3-46.
SHI Ziqi. Data-Driven method for predicting the health state and trend of winder chucks[D]. Shanghai: Donghua University, 2022:3-46.
[52] 朱闯闯. 基于深度学习的化纤卷绕机卡头故障诊断方法[D]. 上海: 东华大学, 2022:1-55.
ZHU Chuangchuang. Fault diagnosis method of chuck head of chemical fiber winder based on deep learning[D]. Shanghai: Donghua University, 2022:1-55.
[53] 张洁, 高鹏捷, 汪俊亮, 等. 一种巡游式机织面料疵点在线检测器: 111650208B[P].2021-08-27.
ZHANG Jie, GAO Pengjie, WANG Junliang, et al. A patrol type online detector for weaving fabric defects:111650208B[P].2021-08-27.
[54] 赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17): 86-97.
doi: 10.3901/JME.2021.17.086
ZHAO Shuxuan, ZHANG Jie, WANG Junliang, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021, 57 (17): 86-97.
doi: 10.3901/JME.2021.17.086
[55] 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021 (6): 54-56, 58.
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic fullprocess automatic spinning workshop[J]. China Textile Leader, 2021 (6): 54-56, 58.
[56] 编辑部. 新一代人工智能发展规划[J]. 科技导报, 2018, 36 (17): 113.
Editorial Department of Science & Technology Review Development plan of new generation artificial intelligence[J]. Science & Technology Review, 2018, 36 (17): 113.
[1] ZHANG Jie, XU Chuqiao, WANG Junliang, ZHENG Xiaohu. Advancement in data-driven intelligent control system for roboticized textile production [J]. Journal of Textile Research, 2022, 43(09): 1-10.
[2] DU Huanzheng, LIU Jiancheng, LU Sha. Green innovation and development of textile industry under dual carbon goals [J]. Journal of Textile Research, 2022, 43(09): 120-128.
[3] MAO Huimin, SUN Lei, TU Jiajia, SHI Weimin. Key technology for yarn automatic splicer [J]. Journal of Textile Research, 2022, 43(09): 21-26.
[4] GAO Xiaofei, QI Lizhe, SUN Yunquan. Design of shape-following manipulator for three-dimensional sewing of flexible fabrics [J]. Journal of Textile Research, 2022, 43(09): 27-33.
[5] LIU Feng, XU Jie, KE Wenbo. Real-time dynamic scheduling for garment sewing process based on deep reinforcement learning [J]. Journal of Textile Research, 2022, 43(09): 41-48.
[6] TANG Zhengkun, LIU Yanbin, XU Chenye, LIU Yanbiao, SHEN Chensi, LI Fang, WANG Huaping. Trend of environmental governance in textile industry aiming at carbon neutrality and emission reduction [J]. Journal of Textile Research, 2022, 43(01): 131-140.
[7] ZHANG Yaopeng, SHEN Chensi, XU Chenye, LI Fang. Review on treatment technology for typical pollutants in textile industry [J]. Journal of Textile Research, 2021, 42(08): 24-33.
[8] WANG Songsong, PENG Laihu, DAI Ning, SHEN Chunya, HU Xudong. Research on knitting machine interconnection and interoperability structure based on industrial internet [J]. Journal of Textile Research, 2020, 41(01): 165-173.
[9] ZHOU Yaqin, WANG Junliang, BAO Jinsong, ZHANG Jie. Research and implementation of standard system architecture of textile intelligent manufacturing [J]. Journal of Textile Research, 2019, 40(04): 145-151.
[10] . Influence of polyamide fiber on morphology and properties of textile wasted rubber-hindered phenol [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 72-77.
[11] . Motivation of textile industry transfer under context-structure-conduct-performance paradigm [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 156-161.
[12] . Zhejiang textile industry upgrading on industry chain and technology chain integration [J]. Journal of Textile Research, 2015, 36(06): 148-154.
[13] . Region correlation and spatial spillower effects of China's textile industry [J]. Journal of Textile Research, 2015, 36(03): 161-168.
[14] . Digital printing and textile personalized customization C2B mode [J]. Journal of Textile Research, 2015, 36(02): 164-168.
[15] . Study on contributions of China's textile industry to national economic development [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 145-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!