Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (08): 217-224.doi: 10.13475/j.fzxb.20220307302
• Comprehensive Review • Previous Articles Next Articles
LÜ Hongli1, LUO Lijuan2, SHI Jianjun2, ZHENG Zhenrong1(), LI Hongchen1
CLC Number:
[1] |
PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102 (11): 4243-4265.
pmid: 12428989 |
[2] |
DU A, WANG H, ZHOU B, et al. Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation[J]. Chemistry of Materials, 2018, 30 (19): 6849-6857.
doi: 10.1021/acs.chemmater.8b02926 |
[3] |
ZHAO X, WANG W, WANG Z, et al. Flexible PEDOT: PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125115.
doi: 10.1016/j.cej.2020.125115 |
[4] |
ABDULLAH H B, IRMAWATI R, ISMAIL I, et al. Direct synthesis of carbon nanotube aerogel using floating catalyst chemical vapor deposition: effect of gas flow rate[J]. Chemical Papers, 2020, 74 (10): 3359-3365.
doi: 10.1007/s11696-020-01166-6 |
[5] | HUANG D M, GUO C N, ZHANG M Z, et al. Characteristics of nanoporous silica aerogel under high temperature from 950 ℃ to 1 200 ℃[J]. Materials & Design, 2017, 129: 82-90. |
[6] | 蒋璐璐, 邓梦, 王云仪, 等. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(9): 187-194. |
JIANG Lulu, DEBG Meng, WANG Yunyi, et al. Research progress on application of aerogel materials in firefighting clothing[J]. Journal of Textile Research, 2021, 42(9): 187-194. | |
[7] |
GYORI E, VARGA A, FABIAN I, et al. Supercritical CO2 extraction and selective adsorption of aroma materials of selected spice plants in functionalized silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 148: 16-23.
doi: 10.1016/j.supflu.2019.02.025 |
[8] |
LI M Z, JIA L C, ZHANG X P, et al. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 530: 113-119.
doi: 10.1016/j.jcis.2018.06.052 |
[9] | 盛宇, 徐丽慧, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(7): 90-96. |
SHENG Yu, XU Lihui, MENG Yun, et al. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019, 40(7): 90-96. | |
[10] |
WANG Q, YU H, ZHANG Z Y, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70.
doi: S0021-9797(20)30419-7 pmid: 32259693 |
[11] |
VENKATARAMAN M, MISHRA R, KOTRESH T M, et al. Aerogels for thermal insulation in high-performance textiles[J]. Textile Progress, 2016, 48 (2): 55-118.
doi: 10.1080/00405167.2016.1179477 |
[12] |
MALFAIT W J, ZHAO S Y, VEREL R, et al. Surface chemistry of hydrophobic silica aerogels[J]. Chemistry of Materials, 2015, 27 (19): 6737-6745.
doi: 10.1021/acs.chemmater.5b02801 |
[13] |
BAETENS R, JELLE B P, GUSTAVSEN A. Aerogel insulation for building applications: a state-of-the-art review[J]. Energy and Buildings, 2011, 43 (4): 761-769.
doi: 10.1016/j.enbuild.2010.12.012 |
[14] |
LI C D, CHEN Z F, DONG W F, et al. A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure[J]. Journal of Non-Crystalline Solids 2021. DOI: 10.1016/j.jnoncrysol.2020.120517.
doi: 10.1016/j.jnoncrysol.2020.120517 |
[15] |
PADMANABHAN S K, Ul HAQ E, LICCIULLI A, et al. Synthesis of silica cryogel-glass fiber blanket by vacuum drying[J]. Ceramics International, 2016, 42(6): 7216-7222.
doi: 10.1016/j.ceramint.2016.01.113 |
[16] |
TORRES R B, VAREDA J P, LAMY-MENDES A, et al. Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 147: 81-89.
doi: 10.1016/j.supflu.2019.02.010 |
[17] |
WANG Y F, LI Z, HUBER L, et al. Reducing the thermal hazard of hydrophobic silica aerogels by using dimethyldichlorosilane as modifier[J]. Journal of Sol-Gel Science and Technology, 2020, 93 (1): 111-122.
doi: 10.1007/s10971-019-05170-5 |
[18] |
KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020. DOI: 10.1016/j.cis.2020.102101.
doi: 10.1016/j.cis.2020.102101 |
[19] |
WANK L K, FENG J Z, JIANG Y G, et al. Polyvinylmethyldimethoxysilane reinforced methyltrime-thoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters, 2019. DOI: 10.1016/j.matlet.2019.126644.
doi: 10.1016/j.matlet.2019.126644 |
[20] |
RAO A V, BHAGAT S D, HIRASHIMA H, et al. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor[J]. Journal of Colloid and Interface Science, 2006, 300 (1): 279-285.
pmid: 16707131 |
[21] |
LIU C, WU S J, YANG Z F, et al. Mechanically robust and flame-retardant silicon aerogel elastomers for thermal insulation and efficient solar steam generation[J]. ACS Omega, 2020, 5 (15): 8638-8646.
doi: 10.1021/acsomega.0c00086 pmid: 32337427 |
[22] | HAYASE G, KANAMORI K, HASEGAWA G, et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility[J]. Angewandte Chemie, 2013, 52 (41): 10788-10791. |
[23] |
SHIMIZU T, KANAMORI K, NAKANISHI K. Silicone-based organic-inorganic hybrid aerogels and xerogels[J]. Chemistry: A European Journal, 2017, 23 (22): 5176-5187.
doi: 10.1002/chem.v23.22 |
[24] |
MALEKI H, DURAES L, PORTUGAL A, et al. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014, 197: 116-129.
doi: 10.1016/j.micromeso.2014.06.003 |
[25] |
CHOI H, PARALE V G, KIM T, et al. Structural and mechanical properties of hybrid silica aerogel formed using triethoxy (1-phenylethenyl) silane[J]. Microporous and Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110092.
doi: 10.1016/j.micromeso.2020.110092 |
[26] |
ZU G Q, KANAMORI K, MAENO A, et al. Superflexible multifunctional polyvinylpoly dimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J]. Angewandte Chemie International Edition, 2018, 57(31): 9722-9727.
doi: 10.1002/anie.v57.31 |
[27] |
WU X D, MAN J W, LIU S J, et al. Isocyanate-crosslinked silica aerogel monolith with low thermal conductivity and much enhanced mechanical properties: fabrication and analysis of forming mechanisms[J]. Ceramics International, 2021, 47 (19): 26668-26677.
doi: 10.1016/j.ceramint.2021.06.074 |
[28] |
JAXEL J, MARKEVICIUS G, RIGACCI A, et al. Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 113-121.
doi: 10.1016/j.compositesa.2017.09.018 |
[29] |
KEHRLE J, PURKAIT T K, KAISER S, et al. Super-hydrophobic silicon nanocrystal-silica aerogel hybrid materials: synthesis, properties, and sensing appli-cation[J]. Langmuir, 2018, 34 (16): 4888-4896.
doi: 10.1021/acs.langmuir.7b03746 |
[30] |
AOKI Y, SHIMIZU T, KANAMORI K, et al. Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bend-ability[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1), 42-51.
doi: 10.1007/s10971-016-4077-1 |
[31] |
李健, 张恩爽, 刘圆圆, 等. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
doi: 10.7536/PC191016 |
LI Jian, ZHANG Enshuang, LIU Yuanyuan, et al. Preparation of the ultralow density aerogel and its application[J]. Progress in Chemistry, 2020, 32(6): 713-726.
doi: 10.7536/PC191016 |
|
[32] |
LI H M, LI J H, THOMAS A, et al. Ultra-high surface area nitrogen-doped carbon aerogels derived from a schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors[J]. Advanced Functional Materials, 2019. DOI:10.1002/adfm.201904785.
doi: 10.1002/adfm.201904785 |
[33] |
YU Z L, YANG N, APOSTOLOPOULOU- KALKAVOURA V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie-International Edition 2018, 57 (17): 4538-4542.
doi: 10.1002/anie.v57.17 |
[34] |
WANG X, LU L L, YU Z L, et al. Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties[J]. Angewandte Chemie International Edition, 2015, 54 (8): 2397-2401.
doi: 10.1002/anie.201410668 |
[35] |
ZHANG R B, AN Z M, ZHAO Y, et al. Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 1531-1539.
doi: 10.1111/ijac.v17.3 |
[36] |
UI Haq E, ZAIDI S F A, ZUBAIR M, et al. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor[J]. Energy and Buildings, 2017, 151: 494-500.
doi: 10.1016/j.enbuild.2017.07.003 |
[37] |
HE J, ZHAO H Y, LI X L, et al. Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation[J]. Ceramics International, 2018, 44(8): 8742-8748.
doi: 10.1016/j.ceramint.2018.01.089 |
[38] | 姚鸿俊, 王飞, 朱召贤, 等. 柔性有机硅气凝胶复合材料的制备及性能研究[J]. 宇航材料工艺, 2019, 49(6):26-32. |
YAO Hongjun, WANG Fei, ZHU Zhaoxian, et al. Preparation and properties of flexible silicone aerogel composites[J]. Aerospace Materials & Technology, 2019, 49(6):26-32. | |
[39] |
LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325.
doi: 10.1016/j.compositesa.2016.02.014 |
[40] |
LI X H, YANG Z C, SHAO H L, et al. The influence of chopped PI fibers on thermal, mechanical and sound insulation properties of methylsilsesquioxane aerogels[J]. Journal of Sol-Gel Science and Technology, 2022, 101:519-528.
doi: 10.1007/s10971-021-05701-z |
[41] |
FU J J, HE C X, HUANG J D, et al. Cellulose nanofibril reinforced silica aerogels: optimization of the preparation process evaluated by a response surface methodology[J]. RSC Advances, 2016, 6 (102): 100326-100333.
doi: 10.1039/C6RA20986F |
[42] |
SI Y, WANG X Q, DOU L Y, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aas8925.
doi: 10.1126/sciadv.aas8925 |
[43] |
PATIL S P, SHENDYE P, MARKERT B, et al. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: insights from all-atom simulations[J]. Scripta Materialia, 2020, 177:65-68.
doi: 10.1016/j.scriptamat.2019.10.010 |
[44] |
CHENG H M XUE, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J]. Composites Science and Technology, 2017, 140:63-72.
doi: 10.1016/j.compscitech.2016.12.031 |
[45] | 乐弦, 陈俊勇, 李华鑫, 等. 气凝胶材料的结构强化研究进展[J]. 硅酸盐学报, 2021, 49(4):681-691. |
YUE Xian, CHEN Junyong, LI Huaxin, et al. Research progress in structure strengthening of aerogels[J]. Journal of The Chinese Ceramic Society, 2021, 49(4):681-691. | |
[46] | SMALLSHIRE D, SWASH A. Britain's dragonflies: a field guide to the damselflies and dragonflies of britain and ireland-fully revised and updated third edition[M]. 3rd ed. Princeton: Princeton University Press, 2014:194-196. |
[47] |
HAN X, HASSAN K T, HARVEY A, et al. Bioinspired synthesis of monolithic and layered aerogels[J]. Advanced Materials, 2018. DOI:10.1002/adma.201706294.
doi: 10.1002/adma.201706294 |
[48] |
CUCE E, CUCE P M, WOOD C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy and Buildings, 2014, 77:28-39.
doi: 10.1016/j.enbuild.2014.03.034 |
[49] |
IGLESIAS-MEJUTO A, GARCIA-GONZALEZ C A. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering[J]. Materials Science & Engineering C:Materials for Biological Applications, 2021. DOI: 10.1016/j.msec.2021.112525.
doi: 10.1016/j.msec.2021.112525 |
[50] |
LIU D P, CHEN C J, ZHOU Y B, et al. 3D-printed, high-porosity, high-strength graphite aerogel[J]. Small Methods, 2021. DOI: 10.1002/smtd.202001188.
doi: 10.1002/smtd.202001188 |
[51] |
TANG X W, ZHOU H, CAI Z C, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels[J]. ACS Nano, 2018, 12 (4): 3502-3511.
doi: 10.1021/acsnano.8b00304 pmid: 29613763 |
[52] |
ZHANG Q Q, ZHANG F, MEDARAMETLA S P, et al. 3D printing of graphene aerogels[J]. Small, 2016, 12(13): 1702-1708.
doi: 10.1002/smll.201503524 pmid: 26861680 |
[53] |
LI V C F, DUNN C K, ZHANG Z, et al. Direct ink write 3D printed cellulose nanocrystal aerogel structures[J]. Scientific Reports, 2017. DOI: 10.1021/acssuschemeng.7b03439.
doi: 10.1021/acssuschemeng.7b03439 |
[54] | MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure: an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018, 10 (26): 22718-22730. |
[55] | FARRELL E S, SCHILT Y, MOSHKOVITZ M Y, et al. 3D printing of ordered mesoporous silica complex structures[J]. American Chemical Society, 2020, 20, 6598-6605. |
[1] | ZHANG Wenhuan, JIANG Shu, LI Jun. Applicability analysis and calculation of clothing area factor in down jacket clothing ensembles [J]. Journal of Textile Research, 2022, 43(11): 148-153. |
[2] | WU Daiwei, HUANG Jiacheng, WANG Yunyi. Effect of clothing deformation on thermal insulation capacity of down jackets [J]. Journal of Textile Research, 2022, 43(09): 167-174. |
[3] | JIANG Shu, LI Jun. Research progress on thermal comfort of infant bedding [J]. Journal of Textile Research, 2022, 43(08): 189-196. |
[4] | GONG Xuebin, LIU Yuanjun, ZHAO Xiaoming. Research progress of aerogel materials for thermal protection [J]. Journal of Textile Research, 2022, 43(06): 187-196. |
[5] | YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100. |
[6] | ZHANG Lingyun, QIAN Xiaoming, ZOU Chi, ZOU Zhiwei. Preparation and properties of SiO2 aerogel/polyester-polyethylene bicomponent fiber composite thermal insulation materials [J]. Journal of Textile Research, 2020, 41(08): 22-26. |
[7] | SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145. |
[8] | XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114. |
[9] | SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118. |
[10] | DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144. |
[11] | . Drying eperiment and kinetics of wetted fabrics exposed to thermal radiation [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 52-57. |
[12] | . Relationship between static and dynamic thermal insulation of local or whole body and its model [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 111-115. |
[13] | . Preparation of skin of thermal manikin Walter with human sweating ratio [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 103-107. |
[14] | . Influence of shape memory alloy on thermal insulation performance of flame retardant fabrics in low radiation environment [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 114-119. |
[15] | . Novel test method of clothing thermal insulation performance [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 92-99. |
|