Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (09): 124-133.doi: 10.13475/j.fzxb.20220811701
• Dyeing and Finishing & Chemicals • Previous Articles Next Articles
LI Hongying1,2, XU Yi1,2, YANG Fan1,2, REN Ruipeng1, ZHOU Quan1,2, WU Lijie1,2, LÜ Yongkang1()
CLC Number:
[1] |
LI J H, YANG F, ZHOU Q, et al. A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: fabrication, visible-light photocatalytic activity and degradation mechanism[J]. Journal of Colloid and Interface Science, 2019, 546: 139-151.
doi: 10.1016/j.jcis.2019.03.028 |
[2] | 杨丽, 王涛, 石现兵, 等. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(9): 149-155. |
YANG Li, WANG Tao, SHI Xianbing, et al. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation[J]. Journal of Textile Research, 2022, 43(9): 149-155. | |
[3] |
KHATAEE A R, KASIRI M B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes[J]. Journal of Molecular Catalysis A: Chemical, 2010, 328(1/2): 8-26.
doi: 10.1016/j.molcata.2010.05.023 |
[4] |
MU Y, RABAEY K, ROZENDAL R A, et al. Decolorization of azo dyes in bioelectrochemical syst-ems[J]. Environmental Science & Technology, 2009, 43(13): 5137.
doi: 10.1021/es900057f |
[5] | 王静, 娄娅娅, 王春梅. 铁基金属-有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(8): 126-131. |
WANG Jing, LOU Yaya, WANG Chunmei. Preparation and decolorization of iron-based metal/organic framework activated carbon fiber composites[J]. Journal of Textile Research, 2022, 43(8): 126-131. | |
[6] | 蒋文雯, 莫慧琳, 樊婷玥, 等. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(4): 107-113. |
JIANG Wenwen, MO Huilin, FAN Tingyue, et al. Preparation of Ag6Si2O7/TiO2 photocatalyst and its photocatalytic degradation of methylene blue[J]. Journal of Textile Research, 2021, 42(4): 107-113. | |
[7] |
DI J, XIA J, LI H, et al. Bismuth oxyhalide layered materials for energy and environmental applications[J]. Nano Energy, 2017, 41: 172-192.
doi: 10.1016/j.nanoen.2017.09.008 |
[8] |
DING C, MA Z, HAN C, et al. Large-scale preparation of BiOX (X=Cl, Br) ultrathin nanosheets for efficient photocatalytic CO2 conversion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 395-400.
doi: 10.1016/j.jtice.2017.06.044 |
[9] |
WANG H T, SHI M S, YANG H F, et al. Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity[J]. Materials Letters, 2018, 222(1): 164-167.
doi: 10.1016/j.matlet.2018.03.179 |
[10] |
GAO M, ZHANG D, PU X, et al. BiOBr photocatalysts with tunable exposing proportion of {001} facets: combustion synthesis, characterization, and high visible-light photocatalytic properties[J]. Materials Letters, 2015, 140: 31-34.
doi: 10.1016/j.matlet.2014.10.032 |
[11] |
CHAO X, XIA J, WANG T, et al. A facile and efficient solvothermal fabrication of three-dimensionally hierarchical BiOBr microspheres with exceptional photocatalytic activity[J]. Materials Letters, 2014, 133: 274-277.
doi: 10.1016/j.matlet.2014.07.016 |
[12] | 李建会. 可见光响应型磁性Fe3O4/BiOX(X=Br,I)光催化剂的制备及降解罗丹明B性能研究[D]. 太原: 太原理工大学, 2019: 10-14. |
LI Jianhui. Preparation of visible-light-responsive magnetic Fe3O4/BiOX(X=Br,I) photocatalysts and their performance for RhB degradation[D]. Taiyuan: Taiyuan University of Technology, 2019: 10-14. | |
[13] |
FU J, TIAN Y, CHANG B, et al. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166.
doi: 10.1039/c2jm34778d |
[14] |
KANAGARAJ T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. Applied Catalysis B: Environmental, 2017, 207: 218-232.
doi: 10.1016/j.apcatb.2017.01.084 |
[15] |
CAO Q W, CUI X, ZHENG Y F, et al. A novel CdWO4/BiOBr p-n heterojunction as visible light photocatalyst[J]. Journal of Alloys and Compounds, 2016, 670: 12-17.
doi: 10.1016/j.jallcom.2016.02.061 |
[16] |
SENASU T, NANAN S. Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation[J]. Journal of Materials Science- Materials in Electronics, 2017, 28(23): 17421-17441.
doi: 10.1007/s10854-017-7676-x |
[17] |
SENASU T, HEMAVIBOOL K, NANAN S. Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation[J]. RSC Advances, 2018, 8 (40): 22592-22605.
doi: 10.1039/C8RA02061B |
[18] |
SENASU T, CHANKHANITTHA T, HEMAVIBOOL K, et al. Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic[J]. Materials Science in Semiconductor Processing, 2021, 123: 105558-105572.
doi: 10.1016/j.mssp.2020.105558 |
[19] |
JING D W, GUO L J, et al. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure[J]. Journal of Physical Chemistry B, 2006, 110: 11139-11145.
doi: 10.1021/jp060905k |
[20] |
MEISSNER D, MEMMING R, KASTENING B. Photoelectrochemistry of cadmium sulfide: I: reanalysis of photocorrosion and flat-band potential[J]. Journal of Physical Chemistry, 1988, 92: 3476-3483.
doi: 10.1021/j100323a032 |
[21] | 白雪峰, 樊慧娟, 王鹏. 硫化镉的改性方法及其在光催化反应中的应用[J]. 太阳能学报, 2008, 29(9):7. |
BAI Xuefeng, FAN Huijuan, WANG Peng. Modification method of cadmium sulfide and its application in photocatalytic reaction[J]. Journal of Solar Energy, 2008, 29(9): 7. | |
[22] |
LIU Z, WU B, ZHU Y, et al. Cadmium sulphide quantum dots sensitized hierarchical bismuth oxybromide microsphere with highly efficient photocatalytic acti-vity[J]. Journal of Colloid and Interface Science, 2013, 392(1): 337-342.
doi: 10.1016/j.jcis.2012.09.062 |
[23] | 牟小冬, 周国明. BiOBr/CdS复合微球的制备及其光催化性能研究[J]. 安全、健康和环境, 2018, 18(4): 35-40. |
MOU Xiaodong, ZHOU Guoming. Preparation of BiOBr/CdS composite microspheres and their photocatalytic performance[J]. Safety, Health & Environment, 2018, 18(4): 35-40. | |
[24] |
CUI W, AN W, LI L, et al. Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B[J]. Applied Surface Science, 2014, 319(15): 298-305.
doi: 10.1016/j.apsusc.2014.05.179 |
[25] |
YOU J, WANG L, BAO W, et al. Synthesis and visible-light photocatalytic properties of BiOBr/CdS nanomaterials[J]. Journal of Materials Science, 2021, 56: 6732-6744.
doi: 10.1007/s10853-020-05721-0 |
[26] |
CAO J, XU B Y, LIN H L, et al. Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance[J]. Dalton Trans, 2012, 41: 11482-11490.
doi: 10.1039/c2dt30883e pmid: 22892685 |
[27] |
ZHANG X, ZHANG L Z, XIE T F, et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2heterostructures[J]. Journal of Physical Chemistry C, 2009, 113: 7371-7378.
doi: 10.1021/jp900812d |
[28] |
QU S Y, XIONG Y H, ZHANG J. Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight[J]. Journal of Colloid and Interface Science, 2018, 527: 78-86.
doi: S0021-9797(18)30554-X pmid: 29783141 |
[29] |
KAKARND Ee S, JUABRUM S, NANAN S. Low temperature synthesis, characterization and photoluminescence study of plate-like ZnS[J]. Materials Letters, 2016, 164: 198-201.
doi: 10.1016/j.matlet.2015.10.154 |
[30] | TS A, SN B, SJ B, et al. CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin anti-biotics[J]. Applied Surface Science, 2021. DOI: 10.1016/j.apsusc.2021.150850. |
[31] | CUI H J, ZHOU Y W. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity[J]. Journal of Physics & Chemistry of Solids, 2018, 112: 80-87. |
[32] |
JIN Y H, XING Z, LI Y H, et al. Synthetic BiOBr/Bi2S3/CdS crystalline material and its degradation of dye under visible light[J]. Crystals, 2021, 11(8): 899.
doi: 10.3390/cryst11080899 |
[33] |
CHENG H F, HUANG B B, DAI Y, et al. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances[J]. Langmuir, 2010, 26: 6618-6624.
doi: 10.1021/la903943s pmid: 20104877 |
[34] |
FU J, TIAN Y L, CHANG B B, et al. BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22: 21159-21166.
doi: 10.1039/c2jm34778d |
[1] | WANG Guoqin, FU Xiaohang, ZHU Yuke, WU Liguang, WANG Ting, JIANG Xiaojia, CHEN Huali. Photodegradation mechanism and pathway of visible light-response mesoporous TiO2 for Rhodamine B [J]. Journal of Textile Research, 2023, 44(05): 155-163. |
[2] | CHEN Mingxing, ZHANG Wei, WANG Xinya, XIAO Changfa. Research progress of preparation of nanofiber-supported catalysts and application thereof in environmental protection [J]. Journal of Textile Research, 2023, 44(01): 209-218. |
[3] | ZHENG Linjuan, YU Jia, YIN Chong, LIANG Zhijie, MAO Qinghui. Preparation and photocatalytic properties of cotton fabrics loaded with polymetallic organic framework material [J]. Journal of Textile Research, 2022, 43(10): 106-111. |
[4] | ZHOU Xiaoju, HU Zhenglong, REN Yiming, XIE Landong. Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst [J]. Journal of Textile Research, 2022, 43(10): 97-105. |
[5] | YANG Li, WANG Tao, SHI Xianbing, HAN Zhenbang. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation [J]. Journal of Textile Research, 2022, 43(09): 149-155. |
[6] | QIAN Jiaqi, QU Jian'gang, HU Xiaolin, MAO Qinghui. Preparation and property of reduced graphene oxide/viscose-based BiVO4 photocatalyst [J]. Journal of Textile Research, 2022, 43(06): 100-106. |
[7] | HOU Qianqian, LI Wenxi, ZHAO Meihua. Cyanotype process of cotton fabric under photocatalytic conditions [J]. Journal of Textile Research, 2022, 43(04): 110-116. |
[8] | SHI Minhui, LI Bingrui, WANG Ting, WU Liguang. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastewater [J]. Journal of Textile Research, 2021, 42(12): 103-110. |
[9] | SONG Yingqi, PAN Jiahao, WU Liguang, WANG Ting, DONG Chunying. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light [J]. Journal of Textile Research, 2020, 41(12): 102-110. |
[10] | QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14. |
[11] | XIANG Wei, YANG Honglin, QUAN Qiongying. Preparation and application of polyacrylate/rhodamine B composite latex by miniemulsion polymerization [J]. Journal of Textile Research, 2019, 40(09): 122-127. |
[12] | ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, XIAO Changfa. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application [J]. Journal of Textile Research, 2019, 40(09): 1-7. |
[13] | ZHANG Yian, DI Jianfeng. Preparation of photocatalyst loaded activated carbon grafted with polyhydrazide for removing formaldehyde [J]. Journal of Textile Research, 2019, 40(03): 109-117. |
[14] | . Preparation and photocatalytic degradation decoloring of TiO2 / reduced graphene oxide composites [J]. Journal of Textile Research, 2018, 39(12): 78-83. |
[15] | . Preparation and performance of self-cleaning fabrics based on Ag/TiO2 photocatalysis [J]. Journal of Textile Research, 2018, 39(12): 89-94. |
|