Journal of Textile Research ›› 2023, Vol. 44 ›› Issue (11): 19-26.doi: 10.13475/j.fzxb.20220606801
• Fiber Materials • Previous Articles Next Articles
LEI Caihong1,2, YU Linshuang1, JIN Wanhui3, ZHU Hailin1,2, CHEN Jianyong1()
CLC Number:
[1] |
CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside[J]. Acta Biomaterialia, 2020, 103:24-51.
doi: S1742-7061(19)30800-1 pmid: 31805409 |
[2] | WEI W, LIU J, PENG Z B, et al. Gellable silk fibroin-polyethylene sponge for hemostasis[J]. Artificial Cells, 2020, 48(1):28-36. |
[3] |
PATIL P P, REAGAN M R, BOHARA R A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings[J]. International Journal of Biological Macromolecules, 2020, 164:4613-4627.
doi: 10.1016/j.ijbiomac.2020.08.041 pmid: 32814099 |
[4] |
TEUSCHL A H, ZIPPERLE J, HUBER Gries C, et al. Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements[J]. Journal of Biomedical Materials Research: Part A, 2017, 105(3):687-696.
doi: 10.1002/jbm.v105.3 |
[5] | 熊亮, 陈锦涛, 韦加娜. 丝素蛋白电纺抗菌止血材料的制备及其性能评价[J]. 广东化工, 2018, 45(11):67-69. |
XIONG Liang, CHEN Jintao, WEI Jiana. Preparation of silk fibroin electrospun antimicrobial hemostatic material and its performance evaluation[J]. Guangdong Chemical Industry, 2018, 45(11):67-69. | |
[6] | 马烨. 壳聚糖医用敷料的制备及性能研究[D]. 南京: 南京理工大学, 2018:16-18. |
MA Ye. Research on preparation and performance of chitosan wound dressing[D]. Nanjing: Nanjing University of Science and Technology, 2018:16-18. | |
[7] | 白雪, 毕华, 张雪峰, 等. 壳聚糖改性及其用于止血海绵的研究进展[J]. 高分子通报, 2021(3):13-19. |
BAI Xue, BI Hua, ZHANG Xuefeng, et al. Progress of chitosan study in hemostatic sponge[J]. Chinese Polymer Bulletin, 2021(3):13-19. | |
[8] | 廖硕, 何星. 静电纺丝用于制备止血材料的研究进展[J]. 广东化工, 2018, 45(7):153-154. |
LIAO Shuo, HE Xing. Research progress in preparation of hemostatic materials by electrospinning[J]. Guangdong Chemical Industry, 2018, 45(7):153-154. | |
[9] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(5):1-8. |
ZHANG Beilei, SHEN Mingwu, SHI Xiangyang. Preparation and biomedical applications of electrospun short fibers[J]. Journal of Textile Research, 2021, 42(5):1-8.
doi: 10.1177/004051757204200101 |
|
[10] | 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4):33-41. |
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4):33-41.
doi: 10.1177/004051757204200107 |
|
[11] | LI Mengna, LI Na, QIU Weiwang, et al. Nitric oxide-releasing L-tryptophan and L-phenylalanine based poly(ester urea)s electrospun composite mats as antibacterial and antibiofilm dressing for wound healing[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2021.109484. |
[12] |
VARSHNEY N, SAHI A K, PODDAR S, et al. Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: fabrication and characteriza-tion[J]. International Journal of Biological Macromolecules, 2020, 160:112-127.
doi: 10.1016/j.ijbiomac.2020.05.090 |
[13] | 范小红, 徐国平, 刘玉, 等. 棉织带丝素蛋白丝质化后处理工艺[J]. 现代纺织技术, 2020, 28(2):76-79. |
FAN Xiaohong, XU Guoping, LIU Yu, et al. Treatment process of cotton ribbon with silk fibroin[J]. Advanced Textile Technology, 2020, 28(2):76-79. | |
[14] | 赵新飞, 宋立新, 熊杰. 丝素蛋白/聚己内酯共混复合纳米纤维拉伸性能研究[J]. 现代纺织技术, 2017, 25(2):1-5. |
ZHAO Xinfei, SONG Lixin, XIONG Jie. Study on tensile property of silk fibroin/polycaprolactone blend composite nanofibers[J]. Advanced Textile Technology, 2017, 25(2):1-5. | |
[15] | HUANG X, FU Q, DENG Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo[J]. Carbohydrate Polymers, 2021.DOI: 10.1016/j.carbpol.2020.117256. |
[16] |
CHENG K, TAO X, QI Z, et al. Highly absorbent silk fibroin protein xerogel[J]. ACS Biomaterials Science and Engineering, 2021, 7(8):3594-3607.
doi: 10.1021/acsbiomaterials.1c00467 |
[17] | WANG Z, HU W, DU Y, et al. Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing[J]. ACS Applied Materials & Interfaces, 2020, 12(12):13622-13633. |
[18] | LI T T, ZHONG Y, YAN M, et al. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning[J]. Nanomaterials, 2019.DOI:10.3390/nano9050714. |
[19] |
QIAO Ziwen, LV X, HE S, et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings[J]. Bioactive Materials, 2021, 6(9):2829-2840.
doi: 10.1016/j.bioactmat.2021.01.039 pmid: 33718665 |
[20] | ZHANG M, WANG D, JI N, et al. Bioinspired design of sericin/chitosan/Ag@MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing[J]. Polymers, 2021. DOI: 10.3390/polym13162812. |
[21] | MA Y, XIN L, TAN H, et al. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 81:522-531. |
[22] | 许宗溥. 壳聚糖/丝素微纤维复合材料以及功能性丝素微纤维的研究[D]. 杭州: 浙江大学, 2018: 52-63. |
XU Zongbo. Study of chitosan/silk microfibers composite materials and functional silk microfibers[D]. Hangzhou: Zhejiang University, 2018: 52-63. | |
[23] | 黄如翼. 基于壳聚糖的抗菌止血复合敷料[D]. 武汉: 华中师范大学, 2018: 20-28. |
HUANG Ruyi. Novel hydrogel wound dressing with hemostatic and antimicrobial properties based on chitosan[D]. Wuhan: Central China Normal University, 2018: 20-28. | |
[24] |
XU Z, GAO Y, LI J, et al. Bio-macromolecules/modified-halloysite composite hydrogel used as multi-functional wound dressing[J]. Smart Materials in Medicine, 2021, 2: 134-144.
doi: 10.1016/j.smaim.2021.03.004 |
[25] |
XING J, WANG Q, HE T, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for anti-microbial[J]. ACS Applied Bio Materials, 2018, 1(5):1236-1243.
doi: 10.1021/acsabm.8b00106 |
[26] | 成悦, 胡颖捷, 付译鋆, 等. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(3):31-37. |
CHENG Yue, HU Yingjie, FU Yiyun, et al. Preparation and properties of antibacterial hemostatic nonwoven elastic bandage[J]. Journal of Textile Research, 2022, 43(3):31-37. |
[1] | RONG Chengbao, SUN Hui, YU Bin. Preparation and antibacterial performances of silver-copper bimetallic nanoparticles/polylactic acid composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(01): 48-55. |
[2] | CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, WU Renxiang, ZHONG Lubin, ZHENG Yuming. Preparation and air filtration performance of electrospun polyamide 6/polystyrene composite membranes [J]. Journal of Textile Research, 2024, 45(01): 56-64. |
[3] | WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16. |
[4] | XU Zhihao, XU Danyao, LI Yan, WANG Lu. Research progress in nanofiber-based biosensors based on surface enhanced Raman spectroscopy [J]. Journal of Textile Research, 2023, 44(11): 216-224. |
[5] | WANG Xixian, GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin. Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration [J]. Journal of Textile Research, 2023, 44(11): 27-35. |
[6] | FAN Mengjing, WU Lingya, ZHOU Xinru, HONG Jianhan, HAN Xiao, WANG Jian. Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn [J]. Journal of Textile Research, 2023, 44(11): 67-73. |
[7] | ZHANG Guangzhi, YANG Fusheng, FANG Jin, YANG Shun. One bath flame retardant finishing of polylactic acid nonwoven by phytic acid/chitosan/boric acid [J]. Journal of Textile Research, 2023, 44(10): 120-126. |
[8] | ZHANG Chengcheng, LIU Rangtong, LI Shujing, LI Liang, LIU Shuping. Pore-forming mechanism via non-solvent volatilization induced phase separation and porous nanofiber preparation based on poly-l-lactic acid [J]. Journal of Textile Research, 2023, 44(10): 16-23. |
[9] | FU Zheng, MU Qifeng, ZHANG Qingsong, ZHANG Yuchen, LI Yuying, CAI Zhongyu. Research progress in colloidal electrospun micro/nano fibers [J]. Journal of Textile Research, 2023, 44(10): 196-204. |
[10] | ZHANG Zifan, LI Pengfei, WANG Jiannan, XU Jianmei. Research progress in silk fibroin drug-loaded nanoparticles [J]. Journal of Textile Research, 2023, 44(10): 205-213. |
[11] | YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10. |
[12] | YAO Shuangshuang, FU Shaoju, ZHANG Peihua, SUN Xiuli. Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation [J]. Journal of Textile Research, 2023, 44(09): 11-19. |
[13] | MENG Xin, ZHU Shufang, XU Yingjun, YAN Xu. In-situ electrospun membranes from recycled polyethylene terephthalate for conservation of paper documents [J]. Journal of Textile Research, 2023, 44(09): 20-26. |
[14] | LUO Yuanze, DAI Mengnan, LI Meng, YU Yangxiao, WANG Jiannan. Application of silk fibroin-based biomaterials for drug delivery [J]. Journal of Textile Research, 2023, 44(09): 213-222. |
[15] | SHAO Yanzheng, SUN Jianghao, WEI Chunyan, LÜ Lihua. Preparation and properties of adsorption fiber made from cotton stalk bark microcrystalline cellulose/modified chitosan [J]. Journal of Textile Research, 2023, 44(08): 18-25. |
|