[1] |
VLIERBERGHE S V, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review[J]. Biomacromolecules, 2011, 12(5): 1387-1408.
|
[2] |
CHENG B, YAN Y, QI J, et al. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12474-12484.
|
[3] |
LI Z, ZHANG S, CHEN Y, et al. Gelatin methacryloyl-based tactile sensors for medical wearables[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202003601.
|
[4] |
HOARE T R, KOHANE D S. Hydrogels in drug delivery: progress and challenges[J]. Polymer, 2008, 49(8): 1993-2007.
|
[5] |
LIU S, KANG M, LI K, et al. Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels[J]. Chemical Engineering Journal, 2018, 334: 2222-2230.
|
[6] |
ZHANG Y, TAO L, LI S, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules[J]. Biomacromolecules, 2011, 12(8): 2894-2901.
|
[7] |
WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9): 1352-1359.
|
[8] |
LI Q, LIU C, WEN J, et al. The design, mechanism and biomedical application of self-healing hydrogels[J]. Chinese Chemical Letters, 2017, 28(9): 1857-1874.
|
[9] |
KANG H W, TABATA Y, IKADA Y. Fabrication of porous gelatin scaffolds for tissue engineering[J]. Biomaterials, 1999, 20(14): 1339-1344.
|
[10] |
ALI E, SULTANA S, HAMID S B A, et al. Gelatin controversies in food, pharmaceuticals, and personal care products: authentication methods, current status, and future challenges[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(9): 1495-1511.
|
[11] |
LIU D, NIKOO M, BORAN G, et al. Collagen and gelatin[J]. Annual Review of Food Science and Technology, 2015, 6: 527-557.
|
[12] |
KLEMM D, CRANSTON E D, FISCHER D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today's state[J]. Materials Today, 2018, 21(7): 720-748.
|
[13] |
HABIBI Y. Key advances in the chemical modification of nanocelluloses[J]. Chemical Society Reviews, 2014, 43(5): 1519-1542.
|
[14] |
YI X, HE J, WANG X, et al. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6190-6198.
|
[15] |
MÜNSTER L, VÍCHA J, KLOFÁČ J, et al. Stability and aging of solubilized dialdehyde cellulose[J]. Cellulose, 2017, 24(7): 2753-2766.
|
[16] |
LEE H, YOU J, JIN H J, et al. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: a comparison of nanofiber and nanocrystal[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115771.
|
[17] |
LEI J, LI X, WANG S, et al. Facile fabrication of biocompatible gelatin-based self-healing hydrogels[J]. ACS Applied Polymer Materials, 2019, 1(6): 1350-1358.
|
[18] |
PEÑA C, CABA K D L, ECEIZA A, et al. Enhancing water repellence and mechanical properties of gelatin films by tannin addition[J]. Bioresource Technology, 2010, 101(17): 6836-6842.
|
[19] |
GOFF K J L, GAILLARD C, HELBERT W, et al. Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers[J]. Carbohydrate Polymers, 2015, 116: 117-123.
|
[20] |
SHAO C, WANG M, CHANG H, et al. A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174.
|
[21] |
FELIX G, REGENASS M, BOLLER T. Sensing of osmotic pressure changes in tomato cells[J]. Plant Physiology, 2000, 124(3): 1169-1180.
|
[22] |
GUAN S, ZHANG K, CUI L, et al. Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration[J]. Materials Science and Engineering: C, 2021. DOI:10.1016/j.msec.2021.112604.
|