[1] |
王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165.
|
|
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12): 157-165.
|
[2] |
王栋, 卿星, 蒋海青, 等. 纤维材料与可穿戴技术的融合与创新[J]. 纺织学报, 2018, 39(5): 150-154.
|
|
WANG Dong, QING Xing, JIANF Haiqing, et al. Integration and innovation of fiber materials and wearable technology[J] Journal of Textile Research, 2018, 39(5): 150-154.
|
[3] |
聂文琪, 孙江东, 许帅, 等. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 47(7): 200-206.
|
|
NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Research progress in supercapacitors based on flexible textile fibers[J]. Journal of Textile Research, 2022, 43(7): 200-206.
|
[4] |
LIU Wei, SONG Minsang, KONG Biao, et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201603436.
|
[5] |
TAO Jiayou, LIU Nishuang, MA Wenzhen, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure[J]. Scientific Reports, 2013. DOI: 10.1038/srep02286.
|
[6] |
PAN Zhenghui, YANG Jie, ZHANG Qichong, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019. DOI: 10.1002/aenm.201802753.
|
[7] |
XIAO Wei, HUANG Jing, ZHOU Wenjie, et al. Surface modification of commercial cotton yarn as electrode for construction of flexible fiber-shaped supercapacitor[J]. Coatings, 2021. DOI: ARTN 108610.3390/coatings11091086.
|
[8] |
庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9): 1-7.
|
|
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9): 1-7.
|
[9] |
FANG Bo, CHANG Dan, XU Zhen, et al. A review on graphene fibers: expectations, advances, and pros-pects[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201902664.
|
[10] |
何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894.
|
|
HE Dafang, WU Jian, LIU Zhanjian, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894.
|
[11] |
XU Zhen, GAO Chao. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011. DOI: 10.1038/ncomms1583.
|
[12] |
TIAN Qishi, XU Zhen, LIU Yingjun, et al. Dry spinning approach to continuous graphene fibers with high toughness[J]. Nanoscale, 2017, 9(34): 12335-12342.
|
[13] |
DONG Zelin, JIANG Changcheng, CHENG Huhu, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.
|
[14] |
HUA Chunfei, SHANG Yuanyuan, LI Xiying, et al. Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker[J]. Nanoscale, 2016, 8(20): 10659-10668.
|
[15] |
LIU Qiang, ZHOU Jingwen, SONG Chenhui, et al. 2.2V high performance symmetrical fiber-shaped aqueous supercapacitors enabled by "water-in-salt" gel electrolyte and N-doped graphene fiber[J]. Energy Storage Mater, 2020, 24: 495-503.
|
[16] |
WANG Chunya, XIA Kailun, WANG Huimin, et al. Advanced carbon for flexible and wearable elec-tronics[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201801072.
|
[17] |
SACKMANN Eric K, FULTON Anna L, BEEBE David J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189.
|
[18] |
JUN Yesl, KANG Edward, CHAE Sukyoung, et al. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering[J]. Lab on A Chip, 2014, 14(13): 2145-2160.
|
[19] |
KANG Edward, JEONG Gi Seok, CHOI Yoon Young, et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883.
|
[20] |
MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical-analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B-Chemical, 1990, 1(1): 244-248.
|
[21] |
MCDONALD J Cooper, DUFFY David C, ANDERSON Janelle R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis, 2000, 21(1): 27-40.
|
[22] |
THORSEN Todd, MAERKL Sebastian J, QUAKE Stephen R. Microfluidic large-scale integration[J]. Science, 2002, 298(5593): 580-584.
|
[23] |
ZHANG Mengfan, PENG Xiaotong, FAN Penghui, et al. Recent progress in preparation and application of fibers using microfluidic spinning technology[J]. Macromolecular Chemistry and Physics, 2022. DOI: 10.1002/macp.202100451.
|
[24] |
JIA Luanluan, HAN Fengxuan, YANG Huili, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications[J]. Advanced Healthcare Materials, 2019. DOI: 10.1002/adhm.201900435.
|
[25] |
SONG Helen, CHEN Delai L, ISMAGILOV Rustem F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie-International Edition, 2006, 45(44): 7336-7356.
|
[26] |
HE Yong, WU Yan, FU Jianzhong, et al. Fabrication of paper-based microfluidic analysis devices: a review[J]. RSC Advances, 2015, 5(95): 78109-78127.
|
[27] |
蒋艳, 马翠翠, 胡贤巧, 等. 微流控纸芯片的加工技术及其应用[J]. 化学进展, 2014, 26(1): 167-177.
|
|
JIANG Yan, MA Cuicui, HU Xianqiao, et al. Fabrication techniques of microfluidic paper-based chips and their applications[J]. Progress in Chemistry, 2014, 26(1): 167-177.
|
[28] |
WHITESIDES George M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
|
[29] |
KIM Jaemyung, COTE Laura J, HUANG Jiaxing. Two dimensional soft material: new faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356-1364.
|
[30] |
DEL Giudice, SHEN Amy Q. Shear rheology of graphene oxide dispersions[J]. Current Opinion in Chemical Engineering, 2017, 16: 23-30.
|
[31] |
VALLÉS Cristina, YOUNG Robert J, LOMAX Deborah J, et al. The rheological behaviour of concentrated dispersions of graphene oxide[J]. Journal of Materials Science, 2014, 49(18): 6311-6320.
|
[32] |
XU Tong, ZHANG Zhipan, QU Liangti. Graphene-based fibers: recent advances in preparation and applica-tion[J]. Advanced materials, 2020. DOI: 10.1002/adma.201901979.
|
[33] |
XU Zhen, PENG Li, LIU Yingjun, et al. Experimental guidance to graphene macroscopic wet-spun fibers, continuous papers, and ultralightweight aerogels[J]. Chem Mater, 2016, 29(1): 319-330.
|
[34] |
CAI Weihua, LAI Ting, YE Jianshan. A spinneret as the key component for surface-porous graphene fibers in high energy density micro-supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(9): 5060-5066.
|
[35] |
XIN Guoqing, ZHU Weiguang, DENG Yanxiang, et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres[J]. Nature Nanotechnology, 2019, 14(2): 168-175.
|
[36] |
FANG Bo, XIAO Youhua, XU Zhen, et al. Handedness-controlled and solvent-driven actuators with twisted fibers[J]. Materials Horizons, 2019, 6(6): 1207-1214.
|
[37] |
GUAN Tuxiang, SHEN Shuo, CHENG Zhisheng, et al. Microfluidic-assembled hierarchical macro-microporous graphene fabrics towards high-performance robust supercapacitors[J]. Chemical Engineering Journal, 2022. DOI: ARTN13587810.1016/j.cej.2022.135878.
|
[38] |
PARK H, LEE K H, KIM Y B, et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aau2104.
|
[39] |
XIA Yu, MATHIS Tyler S, ZHAO Mengqiang, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705): 409-412.
|
[40] |
DU Xiangyun, LI Qing, WU Guan, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201903733.
|
[41] |
HONG Yu Lim, RYU Seongwoo, JEONG Hyeon Su, et al. Surface functionalization effect of graphene oxide on its liquid crystalline and assembly behaviors[J]. Applied Surface Science, 2019. DOI: 10.1016/j.apsusc.2019.03.023.
|
[42] |
SHAO Feng, HU Nantao, SU Yanjie, et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapa-citors[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123692.
|
[43] |
KANG Edward, CHOI Yoon Young, CHAE Su Kyoung, et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds[J]. Advanced Materials, 2012, 24(31): 4271-4277.
|
[44] |
XIN Guoqing, YAO Tiankai, SUN Hongtao, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science, 2015, 349(6252): 1083-1087.
|
[45] |
XU Zhen, SUN Haiyan, ZHAO Xiaoli, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193.
|
[46] |
CAO Jun, ZHANG Yongyi, MEN Chuanling, et al. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions[J]. ACS Nano, 2014, 8(5): 4325-4333.
|
[47] |
ABOUTALEBI Seyed Hamed, JALILI Rouhollah, ESRAFILZADEH Dorna, et al. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles[J]. ACS Nano, 2014, 8(3): 2456-2466.
|
[48] |
CHEN Shaohua, MA Wujun, CHENG Yanhua, et al. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors[J]. Nano Energy, 2015, 15: 642-653.
|
[49] |
WU Changcun, WANG Xia, ZHUO Qiqi, et al. A facile continuous wet-spinning of graphene oxide fibers from aqueous solutions at high pH with the introduction of ammonia[J]. Carbon, 2018, 138: 292-299.
|
[50] |
GUAN Tuxiang, SHEN Liming, BAO Ningzhong. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17338-17345.
|
[51] |
SIMON Patrice, GOGOTSI Yury. Perspectives for electrochemical capacitors and related devices[J]. Nature materials, 2020, 19(11): 1151-1163.
|
[52] |
MING X, WEI A, LIU Y, et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers[J]. Advanced Materials, 2022. DOI: 10.1002/adma.202201867.
|
[53] |
MA Wujun, CHEN Shaohua, YANG Shengyuan, et al. Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors[J]. RSC Advances, 2016, 6(55): 50112-50118.
|
[54] |
ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of gra-phene[J]. Science, 2011, 332(6037): 1537-1541.
|
[55] |
QIU Hui, CHENG Hengyang, MENG Jinku, et al. Magnetothermal microfluidic-assisted hierarchical microfibers for ultrahigh energy density supercapa-citors[J]. Angewandte Chemie-International Edition, 2020, 59(20): 7934-7943.
|
[56] |
WU X J, WU G, TAN P F, et al. Construction of microfluidic oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(19): 8940-8946.
|
[57] |
MENG Jinku, WU Guan, WU Xingjiang, et al. Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro energy storage[J]. Advanced Science, 2020. DOI: 10.1002/advs.201901931.
|
[58] |
XU Tong, DING Xiaoteng, LIANG Yuan, et al. Direct spinning of fiber supercapacitor[J]. Nanoscale, 2016, 8(24): 12113-12117.
|
[59] |
KOU Liang, HUANG Tieqi, ZHENG Bingna, et al. Coaxial wet-spun yarn supercapacitors for high energy density and safe wearable electronics[J]. Nature Communications, 2014. DOI: 10.1038/ncomms4754.
|
[60] |
LI Hongfei, TANG Zijie, LIU Zhuoxin, et al. Evaluating flexibility and wearability of flexible energy storage devices[J]. Joule, 2019, 3(3): 613-619.
|
[61] |
KHUDIYEV Tural, LEE Jung Tae, COX Jason R, et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202004971.
|
[62] |
SEYEDIN Shayan, ROMANO Mark S, MINETT Andrew I, et al. Towards the knittability of graphene oxide fibres[J]. Scientific Reports, 2015. DOI: 10.1038/srep14946.
|
[63] |
LI Zheng, XU Zhen, LIU Yingjun, et al. Multifunctional non-woven fabrics of interfused graphene fibres[J]. Nature Communications, 2016. DOI: 10.1038/ncomms13684.
|
[64] |
GUAN Tuxiang, CHENG Zhisheng, LI Zemei, et al. Hydrothermal-assisted in situ growth of vertically aligned MoS2 nanosheets on reduced graphene oxide fiber fabrics toward high-performance flexible supercapacitors[J]. Industrial & Engineering Chemistry Research, 2022, 61(11): 3840-3849.
|