[1] |
ASHJARAN A, AZARMI R. Survey on common bio fibers and polymers in recyclable textiles[J]. Journal of Chemical & Pharmaceutical Research, 2015, 7:202-208.
|
[2] |
SHEN F, XIAO W X, LIN L L, et al. Enzymatic saccharification coupling with polyester recovery from cottonebased waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255.
|
[3] |
WANG J, LI Y, WANG Z, et al. Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution[J]. Cellulose, 2016, 23(3):2173-2183.
|
[4] |
ASAADI S, HUMMEL M, HELLSTEN S, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid[J]. Chemsuschem, 2016, 22(9):3250-3258.
|
[5] |
MUSSANA H, YANG X, TESSIMA M, et al. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system[J]. Industrial Crops and Products, 2018, 113: 225-233.
|
[6] |
HONG F, GUO X, ZHANG S, et al. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment[J]. Bioresource Technology, 2012, 104: 503-508.
|
[7] |
SILVA R D, WANG X, BYRNE N. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 55(4):29094-29098.
|
[8] |
陈亚宁, 陈昀. 稀盐酸水解棉纤维反应过程的综合研究[J]. 北京服装学院学报(自然科学版), 2010, 30(2): 24-28.
|
|
CHEN Yaning, CHEN Yun. Comprehensive study on the process of cotton fiber hydrolysis by dilute hydrochloric acid[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2010, 30(2):24-28.
|
[9] |
CHU C Y, WU S Y, TSAI C Y, et al. Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8743-8750.
|
[10] |
JEIHANIPOUR A, KARIMI K, NIKLASSON C, et al. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Management, 2010, 30(12):2504-2509.
|
[11] |
LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2011, 83:1834-1842.
|
[12] |
CERQUEIRA D A, FILHO G R, MEIRELES C D S. Optimization of sugarcane bagasse cellulose acetyla-tion[J]. Carbohydrate Polymers, 2007, 69(3):579-582.
|
[13] |
FILHO G R, MONTEIRO D S, MEIRELES C D S, et al. Synthesis and characterization of cellulose acetate produced from recycled newspaper[J]. Carbohydrate Polymers, 2008, 73:74-82.
|
[14] |
刘红茹, 陈韵. 醇解法分离废弃涤棉混纺织物工艺研究[J]. 合成纤维工业, 2015, 38(6):22-24.
|
|
LIU Hongru, CHEN Yun. Separation of waste polyester-cotton blended fabrics by glycolysis method[J]. China Synthetic Fiber Industry, 2015, 38(6):22-24.
|
[15] |
MA M Y, WANG S, LIU Y, et al. Insights into the depolymerization of polyethylene terephthalate in methanol[J]. Journal of Applied Polymer Science, 2022.DOI:10.1002/app.52814.
|
[16] |
SARTOVA K, OMURZAK E, KAMBAROVA G, et al. Activated carbon obtained from the cotton processing wastes[J]. Diamond and Related Materials, 2019, 91:90-97.
|
[17] |
OZSEL B K, NIS B, MERYEMOGLU B, et al. Utilization of waste cotton linter for preparation of activated carbon to be used as catalyst support in aqueous-phase reforming process[J]. Environmental Progress & Sustainable Energy, 2019, 38(2):445-450.
|
[18] |
KIM S H, LEE C M, KAFLE K. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG[J]. Korean Journal of Chemical Engineering, 2013, 30(12):2127-2141.
|
[19] |
ONDA A, OCHI T, YANAGISAWA K. Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal condi-tions[J]. Topics In Catalysis, 2009, 52(6/7):801-807.
|
[20] |
TALLARICO S, COSTANZO P, BONACCI S, et al. Combined ultrasound/microwave chemocatalytic method for selective conversion of cellulose into lactic acid[J]. Scientific Reports, 2019. DOI:10.1038/s41598-019-55487-y.
|
[21] |
汪利平. 纤维素水热降解制备5-羧甲基糠醛的实验研究[D]. 天津: 天津大学, 2006:14-26.
|
|
WANG Liping. Experimental study on the preparation of 5-carboxymethylfurfural by hydrothermal degradation of cellulose[D]. Tianjin: Tianjin University, 2006:14-26.
|
[22] |
CUI L P, SHI S, HOU W S, et al. Hydrolysis and carbonization mechanism of cotton fibers in subcritical water[J]. New Carbon Materials, 2018, 33(3):245-250.
|
[23] |
BEDIAKO J K, WEI W, YUN Y S. Conversion of waste textile cellulose fibers into heavy metal adsorbents[J]. Journal of Industrial and Engineering Chemistry 2016, 43:61-68.
|
[24] |
CHENG X X, FU A P, LI H L, et al. Sustainable preparation of copper particles decorated carbon microspheres and studies on their bactericidal activity and catalytic properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10):2414-2422.
|
[25] |
MÖLLER M, HARNISCH F, SCHRÖDER U. Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivi-ty[J]. RSC Advances, 2013, 3(27):11035-11044.
|
[26] |
SASAKI M, FANG Z, FUKUSHIMA Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial and Engineering Chemistry Research, 2000, 39(8):2883-2890.
|
[27] |
ABEL S, PETERS A, TRINKS S, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202/203:183-191.
|
[28] |
REICHE S, KOWALEW N, SCHLOGL R. Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon[J]. Chemphyschem, 2015, 16(3): 579-587.
|
[29] |
DU Z, HU B, SHI A, et al. Cultivation of a microalga chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process[J]. Bioresource Technology, 2012, 126:354-357.
|
[30] |
PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1:32-65.
|
[31] |
SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chemical Reviews, 1999, 99(2): 603-622.
|
[32] |
RUIZ H A, RODRÍGUEZ-JASSO R M, FERNANDES B D, et al. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 21: 35-51.
|
[33] |
LING C, SHI C, HOU W S, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165.
|
[34] |
ZHANG Y F, HOU W S, GUO H, et al. Preparation and characterization of carbon microspheres from waste cotton textiles by hydrothermal carbonization[J]. Journal of Renewable Materials, 2019, 7(12): 1309-1319.
|
[35] |
LU X W, PELLECHIA P J, FLORA J R V, et al. Inflfluence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose[J]. Bioresource Technology, 2013, 138:180-190.
|
[36] |
WANG S H, WEI M X, XU Q L, et al. Functional porous carbons from waste cotton fabrics for dyeing wastewater purification[J]. Fibers and Polymers, 2016, 17(2):212-219.
|
[37] |
AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1615-1624.
|
[38] |
ZHANG L, LI C J, ZHOU D, et al. Hydrothermal liquefaction of water hyacinth: product distribution and identification[J]. Energy Sources Part A: Recovery, Utilization and Environmental Effects, 2013, 35(14): 1349-1357.
|
[39] |
MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20 (3):848-889.
|
[40] |
KRUSE A. Supercritical water gasification[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2008, 2(5): 415-437.
|
[41] |
KRUSE A, HENNINGSEN T, SINAG A, et al. Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3711-3717.
|
[42] |
SINAG A, GULBAY S, USKAN B, et al. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose[J]. Supercrit Fluids, 2009, 50:121-127.
|
[43] |
INOUE S, UNO S, MINOWA T. Carbonization of cellulose using the hydrothermal method[J]. Journal of Chemical Engineering of Japan, 2008, 41(3):210-215.
|
[44] |
SAKAKI T, SHIBATA M, MIKI T, et al. Decomposition of cellulose in near critical[J]. Energy Fuels, 1996, 10:684-688.
|
[45] |
XIAO L, SHI Z, XU F, et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2012, 118:619-623.
|
[46] |
SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9):2281-2289.
|
[47] |
QI Y J, ZHANG M, QI L, et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. RSC Advances, 2016, 6(25):20814-20823.
|
[48] |
FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4:160-177.
|
[49] |
GAGIC T, PERVA-UZUNALIC A, KNEZ Z, et al. Hydrothermal degradation of cellulose at temperature from 200 to 300℃[J]. American Chemical Society, 2018, 57: 6576-6584.
|
[50] |
YAN L F, QI X Y. Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution[J]. American Chemical Society, 2014, 2(4):897-901.
|
[51] |
EHARA K, SAKA S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments[J]. Journal of Wood Science, 2005, 51(2):148-153.
|
[52] |
KIM D, YOSHIKAWA K, PARK K. Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy[J]. Energies, 2015, 8(12): 14040-14048.
|
[53] |
KIM D, LEE K, PARK K Y. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization[J]. Journal Of Industrial And Engineering Chemistry, 2016, 42:95-100.
|
[54] |
SAHA N, SABA A, REZA M T. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood[J]. Journal of Analytical & Applied Pyrolysis, 2019, 137:138-145.
|
[55] |
YANG F, LI G, GAO P, et al. Mild hydrothermal degradation of cotton cellulose by using a mixed-metal-oxide ZnO-ZrO2 catalyst[J]. Energy Technology, 2013, 1:581-586.
|
[56] |
ZHAO Y, LI W, ZHAO X, et al. Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose[J]. Materials Research Innovations, 2013, 17(7):546-551.
|
[57] |
DEGUCHI S, TSUJII K, HORIKOSHI K. Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions[J]. Green Chemistry, 2008, 10(6):623-626.
|
[58] |
ZHANG C, LIN S, PENG J, et al. Preparation of highly porous carbon through activation of NH4Cl induced hydrothermal microsphere derivation of glucose[J]. RSC Advances, 2017, 7(11): 6486-6491.
|
[59] |
ZHAO H Y, LU X A, WANG Y, et al. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization[J]. Journal of Materials Science, 2017, 52(18):10787-10799.
|
[60] |
GARCÍA-BORDEJÉ E, PIRES E, FRAILE J M. Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions[J]. Carbon, 2017, 123:421-432.
|
[61] |
MOLLER M, NILGES P, HARNISCH F, et al. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation[J]. Chemsuschem, 2011, 4(5):566-579.
|
[62] |
SAKA S, UENO T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water[J]. Cellulose, 1999, 6(3):177-191.
|
[63] |
ZHANG Y F, DAI J M, GUO H, et al. A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel[J]. New Carbon Materials, 2020, 35(3):286-294.
|