Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (01): 1-11.doi: 10.13475/j.fzxb.20231202801
• Invited Paper • Next Articles
CLC Number:
[1] | 郑小虎, 刘正好, 陈峰, 等. 纺织工业智能发展现状与展望[J]. 纺织学报, 2023, 44(8):205-216. |
ZHENG Xiaohu, LIU Zhenghao, CHEN Feng, et al. Current status and prospect of intelligent development in textile industry[J]. Journal of Textile Research, 2023, 44(8):205-216. | |
[2] | 张洪, 魏毅, 李铬, 等. 基于机器人的整经机筒子架自动换筒系统研发[J]. 上海纺织科技, 2020, 48(04):25-28. |
ZHANG Hong, WEIYi, LI Ge, et al. Research and development of automatic tube changing system of warping machine creel based on robot[J]. Shanghai Textile Science & Technology, 2020, 48(04):25-28. | |
[3] | 李铬, 王庆华, 李幼简, 等. 整经机经轴上落机器人经轴升降机构设计[J]. 上海纺织科技, 2018, 46(10):16-18,56. |
LI Ge, WANG Qinghua, LI Youjian, et al. Design of lifting mechanism for installing and uninstalling robot of warp shaft of warping machine[J]. Shanghai Textile Science & Technology, 2018, 46(10):16-18,56. | |
[4] | 李麒阳, 季诚昌, 郗欣甫, 等. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10):188-195. |
LI Qiyang, JI Chengchang, CHI Xinfu, et al. Braiding strategy and yarn trajectory prediction of large sizespecial-shaped structure mandrel[J]. Journal of Textile Research, 2023, 44(10):188-195.
doi: 10.1177/004051757404400308 |
|
[5] | 杜立新, 孙云奎, 司志涛, 等. 找纱头装置及整经设备:202211266921.3[P]. 2022-10-17. |
DU Lixin, SUN Yunkui, SI Zhitao, et al. Thread finding device and warping equipment: 202211266921.3[P]. 2022-10-17. | |
[6] |
GUO J, ZHANG J, WU D, et al. An algorithm based on bidirectional searching and geometric constrained sampling for automatic manipulation planning in aircraft cable assembly[J]. Journal of Manufacturing Systems, 2020, 57:158-168.
doi: 10.1016/j.jmsy.2020.08.015 |
[7] |
LV N, LIU J, DING X, et al. Physically based real-time interactive assembly simulation of cable harness[J]. Journal of Manufacturing Systems, 2017, 43(3):385-399.
doi: 10.1016/j.jmsy.2017.02.001 |
[8] |
SERVIN M, LACOURSUERE C. Rigid body cable for virtual environments[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4):783-796.
doi: 10.1109/TVCG.2007.70629 pmid: 18467754 |
[9] |
VALENTINI P, PENNESTRI E. Modeling elastic beams using dynamic splines[J]. Multibody System Dynamics, 2011, 25(3):271-284.
doi: 10.1007/s11044-010-9232-9 |
[10] |
WANG Q, FANG H, LI N, et al. An efficient FE model of slender members for crash analysis of cable barriers[J]. Engineering Structures, 2013, 52:240-256.
doi: 10.1016/j.engstruct.2013.02.027 |
[11] | BERGOU M, AUDOLY B, VOUGA E, et al. Discrete viscous threads[J]. ACM Transactions on Graphics, 2010, 29(4):1-10. |
[12] |
SHABANA A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J]. Multibody System Dynamics, 1997, 1(3):339-34.
doi: 10.1023/A:1009740800463 |
[13] | 张越, 魏承, 赵阳, 等. 基于ANCF的松弛绳索动力学建模与仿真[J]. 航空学报, 2017, 38(4):162-170. |
ZHANG Yue, WEI Cheng, ZHAO Yang, et al. Dynamic modeling and simulation of slack rope based on ANCF[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4):162-170. | |
[14] |
ZHANG Y, WEEI C, ZHAO Y, et al. Adaptive ANCF method and its application in planar flexible cables[J]. Acta Mechanica Sinica, 2018, 34(1):199-213.
doi: 10.1007/s10409-017-0721-4 |
[15] | LI S, WANG Y, MA X, et al. Modeling and simulation of a moving yarn segment: Based on the absolute nodal coordinate formulation[J]. Mathematical Problems in Engineering, 2019(1): 1-15. |
[16] |
WAKAMATSU H, ARAI E, HIRAL S. Knotting/unknotting manipulation of deformable linear objects[J]. International Journal of Robotics Research, 2006, 25(4):371-395.
doi: 10.1177/0278364906064819 |
[17] |
RICCARDO Z, GIANLUCA P. Robot learning-based pipeline for autonomous reshaping of a deformable linear object in cluttered backgrounds[J]. IEEE Access, 2021, 9: 138296-138306.
doi: 10.1109/ACCESS.2021.3118209 |
[18] | RITA L, ROBERT G, FLORIAB T, et al. ReForm: a robot learning sandbox for deformable linear object manipulation[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021: 4717-4723. |
[19] | SHI K, DENNY J, AMATO N. Spark PRM: using RRTs within PRMs to efficiently explore narrow passages[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong: IEEE, 2014:4659-4666. |
[20] | ZHU B, LI C, SONG L, et al. A* algorithm of global path planning based on the grid map and V-graph environmental model for the mobile robot[C]// 2017 Chinese Automation Congress (CAC). Jinan: IEEE, 2017: 4973-4977. |
[21] | ROSTAMI S M H, SANGAIAH A K, WANG J, et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm[J]. Eurasip Journal on Wireless Communications and networking, 2019.DOI:10.1117/12.2652491. |
[22] | KANG J G, LIM D W, CHOI Y S, et al. Improved RRT-connect algorithm based on triangular inequality for robot path planning[J]. Preprints, 2021, 21(2):333. |
[23] |
CAO X M, ZOU X J, JIA C Y, et al. RRT-based path planning for an intelligent litchi-picking mani-pulator[J]. Computers and Electronics in Agriculture, 2019, 156(11/12):105-118.
doi: 10.1016/j.compag.2018.10.031 |
[24] | YUAN C G, LIU G F, ZHANG W Q, et al. An efficient RRT cache method in dynamic environments for path planning[J]. Robotics and Autonomous Systems, 2020, 131(9): 1-7. |
[25] |
GAN Y, ZHANG B, KE C, et al. Research on robot motion planning based on RRT algorithm with nonholonomic constraints[J]. Neural Processing Letters, 2021, 53:3011-3029.
doi: 10.1007/s11063-021-10536-4 |
[26] |
XU G P, MENG Z, LI S, et al. Collision-free trajectory planning for multi-robot simultaneous motion in preforms weaving[J]. Robotica, 2022, 40(12):4218-4237.
doi: 10.1017/S026357472200087X |
[27] |
YOO W S, DMITROCHENKO O, PARK S J, et al. A new thin spatial beam element using the absolute nodal coordinates: application to a rotating strip[J]. Mechanics Based Design of Structures and Machines, 2005, 33(3):399-422.
doi: 10.1080/15367730500458267 |
[28] |
HUNT K H, CROSSLEY F R E. Coefficient of restitution interpreted as damping in vibroimpact[J]. Journal of Applied Mechanics-Transactions of the ASME, 1975, 42(2) :440-445.
doi: 10.1115/1.3423596 |
[29] | DANNY M, KAUFMAN, RASMUS, et al. Adaptive nonlinearity for collisions in complex rod assemblies[J]. ACM Transactions on Graphics, 2014, 33(4): 1-12. |
[30] | 张越. 基于ANCF的柔索动力学建模与自适应计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2023:12-14. |
ZHANG Yue. Research on dynamic modeling and adaptive computation of flexible cable based on ANCF[D]. Harbin:Harbin Institute of Technology, 2023:12-14. |
[1] | LI Xinrong, HAN Penghui, LI Ruifen, JIA Kun, LU Yuanjiang, KANG Xuefeng. Review and analysis on key technology of digital twin in spinning field [J]. Journal of Textile Research, 2023, 44(10): 214-222. |
[2] | WU Jing, JIANG Zhenlin, JI Peng, XIE Ruimin, CHEN Ye, CHEN Xiangling, WANG Huaping. Research status and development trend of perspective preparation technologies and applications for textiles [J]. Journal of Textile Research, 2023, 44(01): 1-10. |
[3] | JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121. |
[4] | DU Jinsong, YU Yayun, ZHAO Ni, XIE Ziang, FEI Zhonghua, PAN Jingshu. Evaluation modelling for maturity in intelligent manufacturing for multi-type clothing factories [J]. Journal of Textile Research, 2021, 42(05): 162-167. |
[5] | WANG Songsong, PENG Laihu, DAI Ning, SHEN Chunya, HU Xudong. Research on knitting machine interconnection and interoperability structure based on industrial internet [J]. Journal of Textile Research, 2020, 41(01): 165-173. |
[6] | ZHOU Yaqin, WANG Junliang, BAO Jinsong, ZHANG Jie. Research and implementation of standard system architecture of textile intelligent manufacturing [J]. Journal of Textile Research, 2019, 40(04): 145-151. |
[7] | . Research advance of knitting intelligent manufacturing [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 178-183. |
[8] | . Analysis of some key technology basis for intelligent textile manufacturing and its equipment [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 166-171. |
[9] | . Intelligent manufacturing and standard about interoperability verificationof knitting equipment [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 172-177. |
|