Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (04): 33-40.doi: 10.13475/j.fzxb.20231202402
• Academic Salon Column for New Insight of Textile Science and Technology: Green Functional and Smart Textiles • Previous Articles Next Articles
QING Xing, XIAO Qing, CHEN Bin, LI Mufang, WANG Dong()
CLC Number:
[1] | LIN Rongzhou, KIM Han Joon, ACHAVANANTHADITH Sippanat, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-29859-4. |
[2] | ZHANG Mingchao, ZHAO Mingyu, JIAN Muqiang, et al. Printable smart pattern for multifunctional energy-management e-textile[J]. Matter, 2019, 1(1): 168-179. |
[3] | TIAN Bin, FANG Yuhui, LIANG Jing, et al. Fully printed stretchable and multifunctional e-textiles for aesthetic wearable electronic systems[J]. Small, 2022. DOI: 10.1002/smll.202107298. |
[4] | HWANG Sunbin, KANG Minji, LEE Aram, et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform[J]. Nature Communications, 20223. DOI: 10.1038/s41467-022-30894-4. |
[5] | YANG Yuxin, WEI Xiaofei, ZHANG Nannan, et al. A non-printed integrated-circuit textile for wireless theranostics[J]. Nature Communications, 2021. DOI: 10.1038/s41467-021-25075-8. |
[6] | LEE Josephine B, SUBRAMANIAN Vivek. Organic transistors on fiber: a first step towards electronic textiles[C]// IEEE International Electron Devices Meeting 2003. Washington: IEEE, 2003: 199-202. |
[7] |
HAMEDI Mahiar, FORCHHEIMER Robert, INGANäS Olle. Towards woven logic from organic electronic fibres[J]. Nature Materials, 2007, 6(5): 357-362.
doi: 10.1038/nmat1884 pmid: 17406663 |
[8] | ZHANG Haozhe, WANG Zhe, WANG Zhixun, et al. Recent progress of fiber-based transistors: materials, structures and applications[J]. Frontiers of Optoelectronics, 2022. DOI: 10.1007/s12200-022-00002-x. |
[9] | FANG Bo, YAN Jianmin, CHANG Dan, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-29773-9. |
[10] | SHEN Yutong, CHAI Shanshan, ZHANG Qingling, et al. PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.146008. |
[11] | ZHOU Xuhui, WANG Zhe, XIONG Ting, et al. Fiber crossbars: an emerging architecture of smart electronic textiles[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202300576. |
[12] | QING Xing, WU Jianmei, SHU Qing, et al. High gain fiber-shaped transistor based on rGO-mediated hierarchical polypyrrole for ultrasensitive sweat sensor[J]. Sensors Actuators A: Physical, 2023. DOI: 10.1016/j.sna.2023.114297. |
[13] | KANG Minji, LEE Sang A, JANG Sukjae, et al. Low-voltage organic transistor memory fiber with a nanograined organic ferroelectric film[J]. ACS Applied Materials Interfaces, 2019, 11(25): 22575-22582. |
[14] |
KIM Hyoungjun, KANG Tae Hyung, AHN Jongtae, et al. Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable e-textile applications[J]. ACS Nano, 2020, 14(12): 17213-17223.
doi: 10.1021/acsnano.0c07143 pmid: 33295757 |
[15] | LI Mufang, SHU Qing, QING Xing, et al. Boron nitride-mediated semiconductor nanonetwork for ultralow-power fibrous synaptic transistor and C-reactive protein sensing[J]. Journal of Materials Chemistry C, 2023, 11(15): 5208-5216. |
[16] | WANG Yuedan, QING Xing, ZHOU Quan, et al. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing[J]. Biosensors Bioelectronics, 2017, 95: 138-145. |
[17] | WANG Yuedan, ZHOU Zhou, QING Xing, et al. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection[J]. Analytical Bioanalytical Chemistry, 2016, 408(21): 5779-5787. |
[18] | TARABELLA Giuseppe, VILLANI Marco, CALESTANI Davide, et al. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing[J]. Journal of Materials Chemistry, 2012, 22(45): 23830-23834. |
[19] | KIM Soo Jin, KIM Hyoungjun, AHN Jongtae, et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201900564. |
[20] | QING Xing, CHEN Huijun, ZENG Fanjia, et al. All-fiber integrated thermoelectrically powered physiological monitoring biosensor[J]. Advanced Fiber Materials, 2023, 5: 1025-1036. |
[21] | WANG Yao, WANG Yuedan, ZHU Rufeng, et al. Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions[J]. Materials Science Engineering: B, 2022. DOI: 10.1016/j.mseb.2022.115657. |
[22] | YANG Anneng, LI Yuanzhe, YANG Chenxiao, et al. Fabric organic electrochemical transistors for biosen-sors[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201800051. |
[23] | HAO Panpan, ZHU Rufeng, TAO Yang, et al. Dual-analyte sensing with a molecularly imprinted polymer based on enhancement-mode organic electrochemical transistors[J]. ACS Applied Materials Interfaces, 2023, 15(25): 30567-30579. |
[24] | TAO Yang, WANG Yao, ZHU Rufeng, et al. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection[J]. Talanta, 2022. DOI: 10.1016/j.talanta.2021.123055. |
[25] | ZHU Rufeng, WANG Yuedan, TAO Yang, et al. Layer-by-layer assembly of composite conductive fiber-based organic electrochemical transistor for highly sensitive detection of sialic acid[J]. Electrochimica Acta, 2022. DOI: 10.1016/j.electacta.2022.140716. |
[26] | QING Xing, WANG Yuedan, ZHANG Yang, et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monito-ring[J]. ACS Applied Materials Interfaces, 2019, 11(14): 13105-13113. |
[27] | ZHANG Yang, WANG Yuedan, QING Xing, et al. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing[J]. Analytical Bioanalytical Chemistry, 2020, 412(27): 7515-7524. |
[28] | WU Xiaoying, FENG Jianyou, DENG Jue, et al. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stabi-lity[J]. Science China Chemistry, 2020, 63: 1281-1288. |
[29] | YANG Anneng, SONG Jiajun, LIU Hong, et al. Wearable organic electrochemical transistor array for skin-surface electrocardiogram mapping above a human heart[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202215037. |
[30] | WU Mengge, YAO Kuanming, HUANG Ningge, et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping of brain activity[J]. Advanced Science, 2023. DOI: 10.1002/advs.202300504. |
[31] | NAWAZ Ali, LIU Qian, LEONG Wei Lin, et al. Organic electrochemical transistors for in vivo bioelectronics[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202101874. |
[32] |
LIU Binzhu, YU Shanshan, ZHOU Ying, et al. Dual-needle field-effect transistor biosensor for in vivo ph monitoring[J]. ACS Sensors, 2023, 8(7): 2609-2617.
doi: 10.1021/acssensors.3c00415 pmid: 37357404 |
[33] | FANG Yuan, FENG Jianyou, SHI Xiang, et al. Coaxial fiber organic electrochemical transistor with high transconductance[J]. Nano Research, 2023, 16(9): 11885-11892. |
[34] | FENG Jianyou, FANG Yuan, WANG Chuang, et al. All-polymer fiber organic electrochemical transistor for chronic chemical detection in the brain[J]. Advanced Functional Materials, 2023. DOI: 10.1002/adfm.202214945. |
[35] | WANG Tianyu, MENG Jialin, ZHOU Xufeng, et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics[J]. Nature Communications, 2022. DOI: 10.1038/s41467-022-35160-1. |
[36] | XU Xiaojie, ZHOU Xufeng, WANG Tianyu, et al. Robust DNA-bridged memristor for textile chips[J]. Angewandte Chemie International Edition, 2020, 59(31): 12762-12768. |
[37] | LIU Yue, ZHOU Xufeng, YAN Hui, et al. Robust memristive fiber for woven textile memristor[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202201510. |
[38] | LEE Sol Kyu, CHO Young Woon, LEE Jong Sung, et al. Nanofiber channel organic electrochemical transistors for low-power neuromorphic computing and wide-bandwidth sensing platforms[J]. Advanced Science, 2021. DOI: 10.1002/advs.202001544. |
[39] | WANG Yuxiao, ZHOU Ruifu, CONG Haofei, et al. Weak uv-stimulated synaptic transistors based on precise tuning of gallium-doped indium zinc oxide nanofibers[J]. Advanced Fiber Materials, 2023, 5(6): 1919-1933. |
[40] | KUNCIC Zdenka, NAKAYAMA. Tomonobu neuromorphic nanowire networks: principles, progress and future prospects for neuro-inspired information processing[J]. Advances in Physics: X, 2021. DOI: 10.1002/advs.202001544. |
[41] | LIU Dapeng, SHI Qianqian, DAI Shilei, et al. The design of 3D-interface architecture in an ultralow-power, electrospun single-fiber synaptic transistor for neuromorphic computing[J]. Small, 2020. DOI: 10.1002/smll.201907472. |
[42] | LEE Yeongjun, OH Jin Young, XU Wentao, et al. Stretchable organic optoelectronic sensorimotor synapse[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aat7387. |
[43] | XU Wentao, MIN Sung Yong, HWANG Hyunsang, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption[J]. Science Advances, 2016. DOI: 10.1126/sciadv.1501326. |
[44] | HAM Seonggil, KANG Minji, JANG Seonghoon, et al. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications[J]. Science Advances, 2020. DOI: 10.1126/sciadv.aba1178. |
[45] | KIM Soo Jin, JEONG Jae Seung, JANG Ho Won, et al. Dendritic network implementable organic neurofiber transistors with enhanced memory cyclic endurance for spatiotemporal iterative learning[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202100475. |
[46] | RASHID Reem B, JI Xudong, RIVNAY Jonathan. Organic electrochemical transistors in bioelectronic circuits[J]. Biosensors Bioelectronics, 2021. DOI: 10.1016/j.bios.2021.113461. |
[47] | JO Young Jin, KIM Soo Young, HYUN Jeong Hun, et al. Fibrillary gelation and dedoping of PEDOT: PSS fibers for interdigitated organic electrochemical transistors and circuits[J]. npj Flexible Electronics, 2022. DOI: 10.1038/s41528-022-00167-7. |
[48] | ZHONG Yueheng, LIANG Qicheng, CHEN Zhu, et al. High-performance fiber-shaped vertical organic electrochemical transistors patterned by surface photolithography[J]. Chemistry of Materials, 2023, 35(22): 9739-9746. |
No related articles found! |
|