Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (05): 1-9.doi: 10.13475/j.fzxb.20221108601
• Fiber Materials • Next Articles
HUANG Qing1,2, SU Zhenyue1,2, ZHOU Yifan1,2, LIU Qingsong1,2, LI Yi1,2, ZHAO Ping1,2, WANG Xin1,2()
CLC Number:
[1] | GE D, YU H Y, MIAO Z Y, et al. Intrinsically conductive bifunctional nanocellulose-reinforced robust and self-healable electronic skin: deep insights into multiple bonding network, property reinforcement, and sensing mechanism[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(3): 1157-1167. |
[2] | OUYANG Z F, LI S H, LIU J T, et al. Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107963. |
[3] |
HUANG W W, LING S J, LI C M, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17): 6486-6504.
doi: 10.1039/c8cs00187a pmid: 29938722 |
[4] |
ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3): 401-416.
doi: 10.1016/s0142-9612(02)00353-8 pmid: 12423595 |
[5] | 李建琴, 顾国达, 崔为正. 人工饲料养蚕的进程与展望[J]. 中国蚕业, 2021, 42(1): 46-52. |
LI Jianqin, GU Guoda, CUI Weizheng. Progress and prospect of silkworm rearing with artificial diet[J]. China Sericulture, 2021, 42(1): 46-52. | |
[6] | 何金涛, 占鹏飞, 郝志华, 等. 家蚕人工饲料研究进展[J]. 蚕桑通报, 2020, 51(1): 16-19. |
HE Jintao, ZHAN Pengfei, HAO Zhihua, et al. Research progress of artificial silkworm feed[J]. Bulletin of Sericulture, 2020, 51(1): 16-19. | |
[7] | 曹学军. 《蚕桑丝绸产业高质量发展行动计划(2021-2025年)》解读节选[J]. 江苏丝绸, 2020(6): 2,53. |
CAO Xuejun. Selected interpretation of the action plan for high quality development of the sericulture and silk industry (2021-2025)[J]. Jiangsu Silk, 2020(6): 2,53. | |
[8] | LI J, CHEN C, ZHA X. Midgut and head transcriptomic analysis of silkworms reveals the physiological effects of artificial diets[J]. Insects, 2022. DOI: 10.3390/insects13030291. |
[9] | ZHOU Z H, YANG H J, CHEN M, et al. Comparative proteomic analysis between the domesticated silk-worm (Bombyx mori) reared on fresh mulberry leaves and on artificial diet[J]. Journal of Proteome Research, 2008, 7(12): 5103-5111. |
[10] | LAMBERTI C, GAI F, CIRRINCIONE S, et al. Investigation of the protein profile of silkworm (Bombyx mori) pupae reared on a well-calibrated artificial diet compared to mulberry leaf diet[J]. PeerJ, 2019. DOI: 10.7717/peerj.6723. |
[11] | DONG H L, ZHANG S X, TAO H, et al. Metabolomics differences between silkworms (bombyx mori) reared on fresh mulberry (morus) leaves or artificial diets[J]. Scientific Reports, 2017. DOI: 10.1038/s41598-017-11592-4. |
[12] | TAO S, WANG J, LIU M, et al. Haemolymph metabolomic differences in silkworms (bombyx mori L.) under mulberry leaf and two artificial diet rearing methods[J]. Archives of Insect Biochemistry and Physiology, 2022. DOI: 10.1002/arch.21851. |
[13] | QIN D, WANG G, DONG Z, et al. Comparative fecal metabolomes of silkworms being fed mulberry leaf and artificial diet[J]. Insects, 2020. DOI: 10.3390/insects11120851. |
[14] | DONG H L, ZHANG S X, CHEN Z H, et al. Differences in gut microbiota between silkworms (bombyx mori) reared on fresh mulberry (morus alba var multicaulis) leaves or an artificial diet[J]. RSC Advances, 2018, 8(46): 26188-26200. |
[15] | 朱良均. 家蚕人工饲料育的蚕丝特性[J]. 国外农学:蚕业, 1992(2): 1-7. |
ZHU Liangjun. Characteristics of silkworm reared with artificial diet[J]. Foreign Agronomy:Sericulture, 1992(2): 1-7. | |
[16] | 胡暄妍, 马明波, 周文龙. 人工饲料育蚕蚕丝的结构和拉伸力学性能[J]. 丝绸, 2020, 57(9): 12-16. |
HU Xuanyan, MA Mingbo, ZHOU Wenlong. Structure and tensile mechanical properties of silk from silkworm raised with artificial feed[J]. Journal of Silk, 2020, 57(9): 12-16. | |
[17] | 张桂征, 闭立辉, 韦博尤, 等. 人工饲料与桑叶不同搭配饲育模式对家蚕新品种桂蚕5号生长发育及茧丝质量的影响[J]. 中国蚕业, 2021, 42(4): 10-14. |
ZHANG Guizheng, BI Lihui, WEI Boyou, et al. Effects of different feeding patterns of artificial diet and mulberry leaves on the growth and silk quality of Guichan No.5:a new silkworm variety[J]. China Sericulture, 2021, 42(4): 10-14. | |
[18] | QU J, FENG P, ZHU Q, et al. Study on the effect of stretching on the strength of natural silk based on different feeding methods[J]. ACS Biomaterials Science & Engineering, 2022, 8(1): 100-108. |
[19] | 周文, 陈新, 邵正中. 红外和拉曼光谱用于对丝蛋白构象的研究[J]. 化学进展, 2006, 18(11): 1514-1522. |
ZHOU Wen, CHEN Xin, SHAO Zhengzhong. Conformation studies of silk proteins with infrared and raman spectroscopy[J]. Progress in Chemistry, 2006, 18(11): 1514-1522. | |
[20] |
LÜ Z, QI P, CAO L, et al. Structural characterization of silk fibers by wide-angle X-ray scattering[J]. Methods in Molecular Biology, 2021, 2347: 241-248.
doi: 10.1007/978-1-0716-1574-4_21 pmid: 34472070 |
[21] | LU H, XIA K, JIAN M, et al. Mechanically reinforced silkworm silk fiber by hot stretching[J]. Research, 2022. DOI: 10.34133/2022/9854063. |
[22] | LIU Q, WANG X, TAN X, et al. Disruption of the metal ion environment by EDTA for silk formation affects the mechanical properties of silkworm silk[J]. Internation Journal of Molecular Sciences, 2019. DOI: 10.3390/ijms20123026. |
[23] | ZHOU L, CHEN X, SHAO Z, et al. Effect of metallic ions on silk formation in the mulberry silkworm, bombyx mori[J]. Journal of Physical Chemistry B, 2005, 109(35): 16937-16945. |
[24] |
WANG X, LI Y, LIU Q, et al. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks[J]. Biochimica et Biophysica Acta-General Subjects, 2017, 1861(3): 567-576.
doi: S0304-4165(16)30445-7 pmid: 27865996 |
[25] | WANG X, LI Y, XIE K, et al. Ca2+ and endoplasmic reticulum Ca2+-ATPase regulate the formation of silk fibers with favorable mechanical properties[J]. Journal of Insect Physiology, 2015, 73: 53-59. |
[26] | SHOUKAT M A, ASHRAF S, ALI M, et al. The effect of Cr (Vi) on silkworm (bombyx mori) fed on in vitro accumulated mulberry leaves[J]. Asian Journal of Agriculture and Biology, 2014, 2: 119-128. |
[27] | ASHFAQ M, AHMAD S, SAGHEER M, et al. Bioaccumulation of chromium (III) in silk-worm (Bombyx mori L.) in relation to mulberry, soil and wastewater metal concentrations[J]. Journal of Animal and Plant Sciences, 2012, 22(3): 627-634. |
[28] | SEYDEL T, KÖLLN K, KRASNOV I, et al. Silkworm silk under tensile strain investigated by synchrotron X-ray diffraction and neutron spectroscopy[J]. Macromolecules, 2007, 40(4): 1035-1042. |
[29] | KRASNOV I, DIDDENS I, HAUPTMANN N, et al. Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales[J]. Physical Review Letters, 2008. DOI: 10.1103/PhysRevLett.100.048104. |
[30] |
MHUKA V, DUBE S, NINDI MM. Chemical, structural and thermal properties of gonometa postica silk fibroin, a potential biomaterial[J]. International Journal of Biological Macromolecules, 2013, 52: 305-311.
doi: 10.1016/j.ijbiomac.2012.09.010 pmid: 23000253 |
[31] | 邵正中. 蚕丝、蜘蛛丝及其丝蛋白[M]. 北京: 化学工业出版社, 2015: 108-109. |
SHAO Zhengzhong. Silk, spider silk and its fibroin[M]. Beijing: Chemical Industry Press, 2015: 108-109. |
[1] | CHEN Kun, XU Jingying, ZHENG Yiqian, LI Jialin, HONG Xinghua. Conductivity and electrical heating properties of reduced graphene oxide modified silk fabric by screen printing [J]. Journal of Textile Research, 2024, 45(03): 122-128. |
[2] | MA Chengnuo, JIANG Kaixiang, CHEN Chunhui, LIU Yuanling, ZHANG Youqiang. Analysis on mechanical properties and fracture morphology of Xinjiang long-staple cotton fiber [J]. Journal of Textile Research, 2024, 45(02): 36-44. |
[3] | GU Jinjun, WEI Chunyan, GUO Ziyang, LÜ Lihua, BAI Jin, ZHAO Hanghuiyan. Preparation and performonce of cotton stalk bast microcrystalline cellulose/modified graphene oxide composite flame-retardant fiber [J]. Journal of Textile Research, 2024, 45(01): 39-47. |
[4] | LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26. |
[5] | CHEN Meiyu, LI Lifeng, DONG Xia. Mechanical properties of long carbon chain polyamide 1012 fiber at different temperature fields [J]. Journal of Textile Research, 2023, 44(11): 9-18. |
[6] | SU Miao, LI Saiquan, YANG Limei, DUAN Yiting, LU Jialiang, ZHOU Kaili. Cross-media reproduction of Qianlong palette color based on characterization model [J]. Journal of Textile Research, 2023, 44(10): 104-112. |
[7] | ZHANG Zifan, LI Pengfei, WANG Jiannan, XU Jianmei. Research progress in silk fibroin drug-loaded nanoparticles [J]. Journal of Textile Research, 2023, 44(10): 205-213. |
[8] | TAN Ting, LI Zheyang, MA Mingbo, ZHOU Wenlong. Study of transdermal characteristics of antioxidant substances in naturally green-colored silk [J]. Journal of Textile Research, 2023, 44(10): 75-80. |
[9] | YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10. |
[10] | YAO Shuangshuang, FU Shaoju, ZHANG Peihua, SUN Xiuli. Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation [J]. Journal of Textile Research, 2023, 44(09): 11-19. |
[11] | LUO Yuanze, DAI Mengnan, LI Meng, YU Yangxiao, WANG Jiannan. Application of silk fibroin-based biomaterials for drug delivery [J]. Journal of Textile Research, 2023, 44(09): 213-222. |
[12] | HE Kaijun, SHEN Jiajia, LIU Guojin. Progress in preparation and application of graphene modified silk [J]. Journal of Textile Research, 2023, 44(09): 223-231. |
[13] | ZHANG Ying, SONG Minggen, JI Hong, CHEN Kang, ZHANG Xianming. Influence of heat-setting process on structure and properties of high-tenacity polyester industrial yarns [J]. Journal of Textile Research, 2023, 44(09): 43-51. |
[14] | SUN Mingtao, CHEN Chengyu, YAN Weixia, CAO Shanshan, HAN Keqing. Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets [J]. Journal of Textile Research, 2023, 44(09): 91-98. |
[15] | ZHAO Mingshun, CHEN Xiaoxiong, YU Jinchao, PAN Zhijuan. Spinning and microstructure and properties of photochromic polylactic acid fibers [J]. Journal of Textile Research, 2023, 44(07): 10-17. |
|