Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (06): 105-112.doi: 10.13475/j.fzxb.20230507301
• Dyeing and Finshing Engineering • Previous Articles Next Articles
WU Shouying1,2, HUANG Qichao2, ZHANG Kaifeng2, ZHANG Linping1,2,3, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()
CLC Number:
[1] | AL-TOHAMY Rania, ALI Sameh S, LI Fanghua, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety[J]. Ecotoxicology and Environental Safety, 2022. DOI:10.1016/j.ecoenv.2021.113160. |
[2] | TKACZYK Angelika, MITROWSKA Kamila, POSYNIAK Andrzej. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review[J]. Science of the Total Environment, 2020. DOI:10.1016/j.scitotenv.2020.137222. |
[3] | ZHU Yanping, ZHU Runliang, XI Yunfei, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019. DOI:10.1016/j.apcatb.2019.05.041. |
[4] | KOHANTORABI Mona, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.127957. |
[5] | WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contami-nants[J]. Chemical Engineering Journal, 2018. DOI:10.1016/j.cej.2017.11.059. |
[6] | ULUCAN-ALTUNTAS Kubra, GUVENC Senem Yazici, CAN-GUVEN Emine, et al. Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation[J]. Environmental Science and Pollution Research, 2022, 29(6): 9110-9123. |
[7] | YANG Lie, HE Liuyang, MA Yongfei, et al. Periodate-based oxidation focusing on activation, multivariate-controlled performance and mechanisms for water treatment and purification[J]. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.120746. |
[8] | LING Chen, WU Shuai, HAN Jiangang, et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production[J]. Water Research, 2022. DOI:10.1016/j.watres.2022.118676. |
[9] | YU Yanghai, DONG Hongyu, LIAN Lushi, et al. Selective and rapid degradation of organic contaminants by Mn(V) generated in the Mn(II)-nitrilotriacetic acid/periodate process[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.136387. |
[10] | BOKARE Alok D, CHOI Wonyong. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology, 2015, 49(24): 14392-14400. |
[11] | CHOI Yejin, YOON Ho-Il, LEE Changha, et al. Activation of periodate by freezing for the degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2018, 52(9): 5378-5385. |
[12] | ZHANG Xi, KAMALI Mohammadreza, ULENERS Timon, et al. UV/TiO2/periodate system for the degradation of organic pollutants-kinetics, mechanisms and toxicity study[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.137680. |
[13] | ZHANG Xi, YU Xiaobin, YU Xinyue, et al. Efficiency and mechanism of 2,4-dichlorophenol degradation by the $\mathrm{UV/IO}_4^-$ process[J]. Science of the Total Environment, 2021. DOI:10.1016/j.scitotenv.2021.146781. |
[14] | DU Jiangkun, XIAO Guangfeng, XI Yanxing, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020. DOI:10.1016/j.watres.2019.115278. |
[15] | LEE Hongshin, YOO Ha-Young, CHOI Jihyun, et al. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles[J]. Environmental Science & Technology, 2014, 48(14): 8086-8093. |
[16] |
ZHANG Ying, ZHOU Minghua. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362: 436-450.
doi: S0304-3894(18)30830-6 pmid: 30261437 |
[17] | YE Yuxin, WEN Cheng, WANG Jiawei, et al. Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation[J]. Chemical Communication, 2020, 56(41): 5476-5479. |
[18] | IGARASHI Mami, ZHU Qianqian, SASAKI Masahide, et al. Catalytic oxidation of 2,4,6-tribromophenol using iron(Ⅲ) complexes with imidazole, pyrazole, triazine and pyridine ligands[J]. Journal of Molecular Catalysis A: Chemical, 2016, 413: 100-106. |
[19] |
DU Jiangkun, TANG Shigang, FAHEEM, et al. Insights into periodate oxidation of bisphenol A mediated by manga-nese[J]. Chemical Engineering Journal, 2019, 369: 1034-1039.
doi: 10.1016/j.cej.2019.03.158 |
[20] | ZONG Yang, ZHANG Hua, SHAO Yufei, et al. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.126991. |
[21] | WANG Lingli, LAN Xu, PENG Wenya, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124436. |
[22] |
FAN Jinhong, QIN Hehe, JIANG Simin. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen[J]. Chemical Engineering Journal, 2019, 359: 723-732.
doi: 10.1016/j.cej.2018.11.165 |
[23] | DONG Yudan, ZHANG Liangqing, ZHOU Peng, et al. Natural cellulose supported carbon nanotubes and Fe3O4NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: an enhanced non-radical oxidation process[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.127054. |
[24] | YU Yuqing, TAN Peng, HUANG Xinjue, et al. Homogeneous activation of peroxymonosulfate using a low-dosage cross-bridged cyclam manganese (II) complex for organic pollutant degradation via a nonradical pathway[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2020.122560. |
[25] | GUO Dongli, YAO Yuan, YOU Shijie, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022. DOI:10.1016/japcatb2022.121289. |
[1] | YANG Liang, KONG Hanhan, LI Weilin, QI Xiaofen, ZHANG Tianyun, WANG Xuemei, LI Wenquan. Preparation of zeolitic imidazolate framework-8 and its adsorption performance on Congo Red [J]. Journal of Textile Research, 2024, 45(07): 140-149. |
[2] | ZHANG Shiyu, YAO Yiting, DONG Chenshan, ZHANG Ruquan, YANG Hongjun, GU Shaojin, HUANG Jingjing, DU Jiehao. Metal-organic frameworks/polypropylene fiber-based composite for rapid degradation of chemical warfare agent simulants [J]. Journal of Textile Research, 2024, 45(06): 134-141. |
[3] | ZHENG Kang, GONG Wenli, BAO Jie, LIU Lin. Preparation and dynamic adsorption properties of amphoteric cellulose porous hydrogel spheres [J]. Journal of Textile Research, 2024, 45(05): 102-112. |
[4] | LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75. |
[5] | ZHU Weiwei, SHU Wei, GU Wenjuan. Effects of loading different polar drugs on structure and properties of viscose fabrics [J]. Journal of Textile Research, 2024, 45(04): 136-141. |
[6] | ZHANG Yongfang, GUO Hong, SHI Sheng, YAN Zhifeng, HOU Wensheng. Degradation of polyester/cotton blended fabrics in hydrothermal system [J]. Journal of Textile Research, 2024, 45(04): 160-168. |
[7] | LI Fang, ZHANG Yili, WANG Man, MENG Xiangzhou, SHEN Chensi. Acute toxic effects of antimony contaminants on green algae and cyanobacteria [J]. Journal of Textile Research, 2024, 45(04): 169-179. |
[8] | CHEN Rongxuan, SUN Hui, YU Bin. Preparation and photocatalytic properties of N-TiO2/ polypropylene melt-blown nonwovens [J]. Journal of Textile Research, 2024, 45(03): 137-147. |
[9] | YANG Zhichao, LIU Shuqiang, WU Gaihong, JIA Lu, ZHANG Man, LI Fu, LI Huimin. Research progress in absorbable surgical sutures [J]. Journal of Textile Research, 2024, 45(01): 230-239. |
[10] | WANG Peng, SHEN Jiakun, LU Yinhui, SHENG Hongmei, WANG Zongqian, LI Changlong. Preparation and photocatalytic properties of g-C3N4/MXene/Ag3PO4/polyacrylonitrile composite nanofiber membranes [J]. Journal of Textile Research, 2023, 44(12): 10-16. |
[11] | ZHANG Yongfang, FEI Pengfei, YAN Zhifeng, WANG Shuhua, GUO Hong. Research progress of hydrothermal degradation of waste cellulose textiles [J]. Journal of Textile Research, 2023, 44(12): 216-224. |
[12] | HUANG Biao, ZHENG Li'na, QIN Yan, CHENG Yujun, LI Chengcai, ZHU Hailin, LIU Guojin. Preparation of porous TiO2 particles and their adsorption for ionic dyes [J]. Journal of Textile Research, 2023, 44(11): 167-175. |
[13] | LI Jingzi, LOU Mengmeng, HUANG Shiyan, LI Fang. Recycling treatment of dyeing wastewater by metal organic framework/graphene composite membrane based on photothermal utilization [J]. Journal of Textile Research, 2023, 44(09): 116-123. |
[14] | LI Hongying, XU Yi, YANG Fan, REN Ruipeng, ZHOU Quan, WU Lijie, LÜ Yongkang. Preparation of three-dimensional ping-pong chrysanthemum-like CdS/BiOBr composite and its application on photocatalytic degradation of Rhodamine B [J]. Journal of Textile Research, 2023, 44(09): 124-133. |
[15] | LIU Qixia, ZHANG Tianhao, JI Tao, GE Jianlong, SHAN Haoru. Preparation of zirconium-based organic framework material/activated carbon fiber composites and their degradation properties [J]. Journal of Textile Research, 2023, 44(09): 134-143. |
|