Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (07): 18-23.doi: 10.13475/j.fzxb.20230301001
• Fiber Materials • Previous Articles Next Articles
YU Chenghao1,2,3, WANG Yuanfei1, YU Tengbo2, WU Tong1,3()
CLC Number:
[1] | GHAVAMI H S, KHOSHTINAT M, SADEGHI-FARAH S, et al. The relationship of coffee consumption and CVD risk factors in elderly patients with T2DM[J]. BMC Cardiovascular Disorders, 2021. DOI:10.1186/s12872-021-02058-7. |
[2] | GOMES C P C, SCHROEN B, KUSTER G M, et al. Regulatory RNAs in heart failure[J]. Circulation, 2020,141:313-328. |
[3] | GONCALVES R C, BANFI A, OLIVEIRA M B, et al. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease[J]. Biomaterials, 2021. DOI: 10.1016/j.biomaterials.2020.120628. |
[4] | JIN D, HU J, XIA D, et al. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo[J]. International Journal of Nanomedicine, 2019,14:4261-4276. |
[5] | AWAD N K, NIU H, ALI U, et al. Electrospun fibrous scaffolds for small-diameter blood vessels: a review[J]. Membranes, 2018. DOI: 10.3390/membranes8010015. |
[6] | LIU R H, ONG C S, FUKUNISHI T, et al. Review of vascular graft studies in large animal models[J]. Tissue Engineering Part B: Reviews, 2018,24:133-143. |
[7] | 孙子茹, 焦恩祥, 袁坤山, 等. 静电纺丝在构建小口径仿生人工血管中的研究进展[J]. 材料导报, 2023, 37(S1):486-490. |
SUN Ziru, JIAO Enxiang, YUAN Kunshan, et al. Research progress of electrostatic spinning in the construction of bionic small-diameter artificial blood vessels[J]. Materials Review, 2023, 37(S1):486-490. | |
[8] | BUSCEMI S, PALUMBO V D, MAFFONGELLI A, et al. Electrospun PHEA-PLA/PCL scaffold for vascular regeneration: a preliminary in vivo evaluation[J]. Transplantation Proceedings, 2017,49:716-721. |
[9] | FARTO-VAAMONDE X, XIAZ-GOMEZ L, PARGA A, et al. Perimeter and carvacrol-loading regulate angiogenesis and biofilm growth in 3D printed PLA scaffolds[J]. J Control Release, 2022,352:776-792. |
[10] | BAZGIR M, SAEINASAB M, ZHANG W, et al. Investigation of cell adhesion and cell viability of the endothelial and fibroblast cells on electrospun PCL, PLGA and coaxial scaffolds for production of tissue engineered blood vessel[J]. J Funct Biomater, 2022. DOI: 10.3390/jfb13040282. |
[11] | HU X, SHEN H, YANG F, et al. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold[J]. Biomaterials, 2008,29:3128-3136. |
[12] | 刘月, 蒋紫仪, 李晶晶, 等. 聚左旋乳酸己内酯/丝素蛋白小口径人工血管细胞共培养及体内生物相容性[J]. 中国组织工程研究, 2022, 26(22):3505-3513. |
LIU Yue, JIANG Ziyi, LI Jingjing, et al. Cell co-culture and in vivo biocompatibility of poly(l-lactic caprolactone)/silk fibroin small-diameter artificial blood vessels[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(22):3505-3513. | |
[13] | 吴桐, 王元非, 于承浩, 等. 一种热致自卷曲聚合物管状支架及其制备方法: 202310102575.3[P].2023-04-25. |
WU Tong, WANG Yuanfei, YU Chenghao, et al.A thermally induced self curling polymer tubular scaffold and its preparation method: 202310102575.3[P].2023-04-25. | |
[14] | HUANG W, TONG Z, WANG R, et al. A review on electrospinning nanofibers in the field of microwave absorption[J]. Ceramics International, 2020, 46(17):26441-26453. |
[15] | CHOR A, GONCALVES R P, COSTA A M, et al. In vitro degradation of electrospun poly(lactic-co-glycolic acid) (PLGA) for oral mucosa regeneration[J]. Polymers (Basel), 2020. DOI: 10.3390/polym12081853. |
[16] | ZHANG X, XU X L, CHEN L S, et al. Multi-responsive hydrogel actuator with photo-switchable color changing behaviors[J]. Dyes and Pigments, 2020. DOI:10.1016/j.dyepig. 2019.108042. |
[17] | 郭凤云, 过子怡, 高蕾, 等. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(6): 46-50. |
GUO Fengyun, GUO Ziyi, GAO Lei, et al. Preparation and properties of thermal bonded fibrous artificial blood vessels[J]. Journal of Textile Research, 2021, 42(6):46-50. | |
[18] | BEHESHTIZADEH N, AZAMI M, ABBASI H, et al. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regenera-tion[J]. Journal of Advanced Research, 2022,40:69-94. |
[19] | HAN F, JIA X, DAI D, et al. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF[J]. Biomaterials, 2013,34:7302-7313. |
[20] | FIORETTA E S, FLEDDERUS J O, BURAKOWSKA-MEISE E A, et al. Polymer-based scaffold designs for in situ vascular tissue engineering: controlling recruitment and differentiation behavior of endothelial colony forming cells[J]. Macromolecular Bioscience, 2012,12:577-590. |
[21] | APTE R S, CHEN D S, FERRARA N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 17:1248-1264. |
[22] | WU T, ZHANG J, WANG Y, et al. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering[J]. Mater Sci Eng C:Mater Biol Appl, 2018,82:121-129. |
[23] | PERTICI V, MARTRIU G, GIMES D, et al. Synthetic polymer-based electrospun fibers: biofunctionalization strategies and recent advances in tissue engineering, drug delivery and diagnostics[J]. Current Medicinal Chemistry, 2018,25:2385-2400. |
[24] | SPADACCIO C, NAPPI F, DE MARCO F, et al. Preliminary in vivo evaluation of a hybrid armored vascular graft combining electrospinning and additive manufacturing techniques[J]. Drug Target Insights, 2016,1:1-7. |
[1] | QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14. |
[2] | XIA Xin;WEI Qufu;LI Jing. Preparation of electrospun high molecular weight chitosan/ Poly(ethylene oxide) composite nanofibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 11-14. |
[3] | KANG Wei-min;CHENG Bo-wen;ZHUANG Xu-pin;DING Chang-kun. Electrospun nano-fiber composite membrane and its filtration properties [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(10): 6-8. |
|