Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (07): 230-239.doi: 10.13475/j.fzxb.20230203802
• Comprehensive Review • Previous Articles Next Articles
YU Wen1,2, DENG Nanping1,2, TANG Xiangquan1, KANG Weimin1,2(), CHENG Bowen3
CLC Number:
[1] | FILATOV Y, BUDYKA A, KIRICHENKO V. Electrospinning of micro-and nanofibers: fundamentals in separation and filtration processes[J]. Journal of Engineered Fibers and Fabrics, 2008. DOI: 10.1177/155892500800300106. |
[2] |
UM I C, FANG D, HSIAO B S, et al. Electro-spinning and electro-blowing of hyaluronic acid[J]. Biomacromolecules, 2004, 5(4): 1428-1436.
pmid: 15244461 |
[3] | PENG M, SUN Q, MA Q, et al. Mesoporous silica fibers prepared by electroblowing of a poly(methyl methacrylate)/tetraethoxysilane mixture in N,N-dimethylformamide[J]. Microporous and Mesoporous Materials, 2008, 115(3): 562-567. |
[4] | LIN Y, YAO Y, YANG X, et al. Preparation of poly(ether sulfone) nanofibers by gas-jet/electros-pinning[J]. Journal of Applied Polymer Science, 2008, 107(2): 909-917. |
[5] | YAO Y, ZHU P, YE H, et al. Polysulfone nanofibers prepared by electrospinning and gas/jet-electro-spinning[J]. Frontiers of Chemistry in China, 2006, 1(3): 334-339. |
[6] | HOLOPAINEN J, HEIKKILÄ M J, SALMI L D, et al. Zeolitic imidazole framework-8 (ZIF-8) fibers by gas-phase conversion of electroblown zinc oxide and aluminum doped zinc oxide fibers[J]. Microporous and Mesoporous Materials, 2018, 267: 212-220. |
[7] |
PAAJANEN J, LÖNNROT S, HEIKKILÄ M, et al. Novel electroblowing synthesis of submicron zirconium dioxide fibers: effect of fiber structure on antimony(V) adsorption[J]. Nanoscale Advances, 2019, 1(11): 4373-4383.
doi: 10.1039/c9na00414a pmid: 36134400 |
[8] | JU J, DENG N, ZHANG D, et al. Facile construction of PCNF & CNT composite material by one-step simultaneous carbonization and chemical vapor deposition[J]. Journal of Materials Science, 2019, 54(2): 1616-1628. |
[9] | KANG J, DENG N, SHI D, et al. Heterojunction-accelerating lithium salt dissociation in polymer solid electrolytes[J]. Advanced Function Materials, 2023. DOI: 10.1002/adfm.202307263. |
[10] | FILATOV I, BOKOVA E, SMULSKAYA M, et al. Comparative analysis of electrospinning methods for producing fibres and materials with a predicted structure and complex of properties[J]. Fibres and Textiles in Eastern Europe, 2021, 29: 69-74. |
[11] | ZHAO Y, JIANG J, LI W, et al. Electrospinning jet behaviors under the constraints of a sheath gas[J]. AIP Advances, 2016, 6(11): 167-628. |
[12] |
LIU Y, JIA C, LI P, et al. Mass production of hierarchically designed engine-Intake air filters by multinozzle electroblow spinning[J]. Nano Letters, 2022, 22(11): 4354-4361.
doi: 10.1021/acs.nanolett.2c00704 pmid: 35611952 |
[13] | AN S, LEE C, LIOU M, et al. Supersonically blown ultrathin thorny devil nanofibers for efficient air cooling[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13657-13666. |
[14] | XU G, CHEN X, ZHU Z, et al. Pulse gas-assisted multi-needle electrospinning of nanofibers[J]. Advanced Composites and Hybrid Materials, 2019, 3(1): 98-113. |
[15] | 周兴海. 气电纺制备中空CeO2/Al2O3超细纤维及其染料吸附性能研究[D]. 天津: 天津工业大学, 2016: 19-20. |
ZHOU Xinghai. Preparation of hollow CeO2/Al2O3 microfibers by electro-blown spinning and dye adsorption properties[D]. Tianjin:Tiangong University, 2016: 19-20. | |
[16] | 房飞宇, 陈新, 王晗, 等.一种基于负压收集的气电纺三维支架制备方法及装置: 201510779113.0[P]. 2017-12-26. |
FANG Feiyu, CHEN Xin, WANG Han, et al. Preparation method and device for a electro-blown spinning three-dimensional support based on negative pressure collection: 201510779113.0[P]. 2017-12-26. | |
[17] | 房飞宇, 王晗, 陈新, 等.一种大量制备三维纳米纤维支架的离心气电纺装置: 201510780518.6 [P]. 2018-05-22. |
FANG Feiyu, WANG Han, CHEN Xin, et al. A centrifugal electro-blown spinning device for preparing a large number of three-dimensional nanofiber scaffolds: 201510780518.6 [P]. 2018-05-22. | |
[18] | 徐寅踊, 赵炳光, 徐尚哲, 等. 用于电纺丝的射出喷嘴及使用该射出喷嘴的电纺丝装置: 201080031458.3 [P]. 2015-07-01. |
XU Yinyong, ZHAO Bingguang, XU Shangzhe, et al. An injection nozzle for electrospinning and device using the injection nozzle: 201080031458.3[P]. 2015-07-01. | |
[19] | SINHA-RAY Suman, LEE M W, SINHA-RAY Sunit, et al. Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20-50 nm confinement[J]. Journal of Materials Chemistry C, 2013, 1(21): 3491-3498. |
[20] | 侯豪情, 程楚云. 高速气流和高压静电生产聚合物纳米纤维的方法及装置: 201410667969.4[P]. 2017-02-22. |
HOU Haoqing, CHENG Chuyun. Method and device for producing polymer nanofibers by high-speed air flow and high pressure electrostatic: 201410667969.4[P]. 2017-02-22. | |
[21] | LIU Y, WEN J, CHEN B, et al. Electro-blown spinning driven by cylindrical rotating triboelectric nanogenerator and its applications for fabricating nanofibers[J]. Applied Materials Today, 2020. DOI: 10.1016/j.apmt.2020.100631. |
[22] | LI L, LIU X, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: a review[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.127744. |
[23] | ZHENG G, JIANG J, WANG X, et al. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications[J]. Materials & Design, 2020. DOI: 10.1016/j.matdes.2020.108504. |
[24] | 王鹏. 基于喷气静电纺纳米纤维成纱机理及纺纱关键设备研究[D]. 西安: 西安工程大学, 2016: 12-45. |
WANG Peng. Research on formation mechanism and key spinning equipment of nano-fibre yarn based on air-jet electrospun[D]. Xi'an: Xi'an Polytechnic University, 2016: 12-45. | |
[25] | POKORNY M, RASSUSHIN V, WOLFOVA L, et al. Increased production of nanofibrous materials by electroblowing from blends of hyaluronic acid and polyethylene oxide[J]. Polymer Engineering and Science, 2016, 56(8): 932-938. |
[26] |
GAO Y, ZHANG J, SU Y, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446.
doi: 10.1039/d0mh01096k pmid: 34821263 |
[27] | KHAYET M, GARCÍA-PAYO M C, QUSAY F A, et al. Effects of gas gap type on structural morphology and performance of hollow fibers[J]. Journal of Membrane Science, 2008, 311(1): 259-269. |
[28] | WANG B, YAO Y, PENG J, et al. Preparation of poly(ester imide) ultrafine fibers by gas-jet/electro-spinning[J]. Journal of Applied Polymer Science, 2009, 114(2): 883-891. |
[29] | KONG C S, YOO W S, LEE K Y, et al. Nanofiber deposition by electroblowing of PVA (polyvinyl alcohol)[J]. Journal of Materials Science, 2009, 44(4): 1107-1112. |
[30] | CAO L, LIU Q, REN J, et al. Electro-blown spun silk/graphene nanoionotronic skin for multifunctional fire protection and alarm[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202102500. |
[31] | LI L, KANG W, ZHUANG X, et al. A comparative study of alumina fibers prepared by electro-blown spinning (EBS) and solution blowing spinning (SBS)[J]. Materials Letters, 2015, 160: 533-536. |
[32] | ZHOU X H, LI L, LI Z H, et al. The preparation of continuous CeO2/CuO/Al2O3 ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic act-ivity[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(17): 12580-12590. |
[33] | LI L, REN H, LIU Y, et al. Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption[J]. Microporous and Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110544. |
[34] | ZHOU X H, KANG W M, XU W, et al. Flexible hollow CeO2/Al2O3 fibers: preparation, characterization and dye adsorption efficiency[J]. RSC Advances, 2015, 5(103): 84535-84542. |
[35] | ZHANG Y, GAO L, DENG N, et al. Fabrication of porous and magnetic Fe/FeNX fibers by electro-blown spinning method for efficient adsorption of Cr (VI) ions[J]. Materials Letters, 2018, 212: 235-238. |
[36] | 李磊, 程博闻, 康卫民, 等. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 材料导报, 2018, 32(2): 207-212. |
LI Lei, CHENG Bowen, KANG Weimin, et al. Fe2O3 photocatalyst supported on ultra-fine fibrous Al2O3 prepared via electro-blown spinning (EBS) with an application to organic dye degradation[J]. Materials Reports, 2018, 32(2): 207-212. | |
[37] | ZHOU X H, SONG K H, LI Z H, et al. The excellent catalyst support of Al2O3 fibers with needle-like mullite structure and HMF oxidation into FDCA over CuO/Al2O3 fibers[J]. Ceramics International, 2019, 45(2): 2330-2337. |
[38] | HOLOPAINEN J, RITALA M. Rapid production of bioactive hydroxyapatite fibers via electroblowing[J]. Journal of the European Ceramic Society, 2016, 36(13): 3219-3224. |
[39] | GUAN D, CHEN Z, HUANG C, et al. Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds[J]. Applied Surface Science, 2008, 255(2): 324-327. |
[40] | MANDAKHBAYAR N, EL-FIQI A, DASHNYAM K, et al. Feasibility of defect tunable bone engineering using electroblown bioactive fibrous scaffolds with dental stem cells[J]. ACS Biomaterials Science & Engineering, 2018, 4(3): 1019-1028. |
[41] | 范兰兰. 锂硫电池正极用多孔碳纤维制备及电化学性能的研究[D]. 天津: 天津工业大学, 2018: 17-47. |
FAN Lanlan. Study on preparation and electrochemical properties of porous carbon fiber for cathode of lithium-sulfur battery[D]. Tianjin: Tiangong University, 2018: 17-47. | |
[42] | DENG N, KANG W, JU J, et al. Polyvinyl alcohol-derived carbon nanofibers/carbon nanotubes/sulfur electrode with honeycomb-like hierarchical porous structure for the stable-capacity lithium/sulfur batte-ries[J]. Journal of Power Sources, 2017, 346: 1-12. |
[43] | JU J, LV Y, WANG L, et al. The construction of Fe-compounds doped porous carbon nanofiber and carbon nanotube composite material by one-step carbonization and CVD for Li-ion capacitor[J]. Journal of The Electrochemical Society, 2019, 166: A1223-A1230. |
[44] | 周兴海. 多孔碳纤维基锂离子电池负极材料的设计、构筑与性能研究[D]. 天津: 天津工业大学, 2020: 27-49. |
ZHOU Xinghai. Design, construction and properties of porous carbon fiber based cathode material for lithium ion batteries[D]. Tianjin: Tiangong University, 2020: 27-49. | |
[45] | ZHOU X H, GAO Y, LYU L H, et al. General construction of molybdenum-based compounds embedded in flexible 3-D interconnected porous carbon nanofibers with protective porous shell for high-performance lithium-ion battery[J]. Carbon, 2021, 179: 142-150. |
[46] | JU J, ZHAO H, KANG W, et al. Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochimica Acta, 2017, 258: 116-123. |
[47] | WANG L, JU J, DENG N, et al. Embedding red phosphorus in hierarchical porous carbon nanofibers as anodes for lithium-ion battery[J]. Materials Letters, 2019, 240: 39-43. |
[48] | ZHOU X H, WANG Y F, ZHU L, et al. Metal sulfide nano-frameworks anchored into 3D honeycomb-like porous carbon nanofibers as freestanding anodes for high performance lithium-ion batteries[J]. Applied Surface Science, 2022. DOI: 10.1016/j.apsusc.2022.153627. |
[49] | WEI L Y, DENG N P, JU J G, et al. ZnF2 doped porous carbon nanofibers as separator coating for stable lithium-metal batteries[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2021.130346. |
[50] | WEI L, DENG N, ZHAO H, et al. ZnF2/ZnS heterostructures@NC doped porous carbon nanofibers as interlayers for stable lithium metal anodes[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2021.109531. |
[51] | QIN Q, DENG N, WANG L, et al. Novel flexible Mn-based carbon nanofiber films as interlayers for stable lithium-metal battery[J]. Chemical Engineering Journal, 2019, 360: 900-911. |
[52] | LIU M, DENG N, JU J, et al. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17843-17852. |
[53] | LIANG Y, KANG W, ZHONG C, et al. Multifunctional LaF3 doped pomegranate-like porous carbon nanofibers with high-speed transfer channel and strong polar interface for high stability lithium sulfur battery[J]. Chemical Engineering Journal, 2021. DOI: 10.1016/j.cej.2020.126449. |
[54] | DENG N, JU J, YAN J, et al. CeF3-doped porous carbon nanofibers as sulfur immobilizers in cathode material for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12626-12638. |
[55] | 郝言. 金属氟化物掺杂多孔碳纳米纤维/硫电极的制备及性能研究[D]. 天津: 天津工业大学, 2020: 45-57. |
HAO Yan. Preparation and properties of metal fluoride-doped porous carbon nanofiber/sulfur electrode[D]. Tianjin: Tiangong University, 2020: 45-57. | |
[56] | CAO L, ZHOU X, LI Z, et al. Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes[J]. Journal of Power Sources, 2019, 413: 376-383. |
[57] | 康卫民, 汪港, 高红静, 等.一种电催化用铜团簇增强蜂窝多孔碳纳米纤维的合成方法: 202210830032.9[P]. 2022-11-22. |
KANG Weimin, WANG Gang, GAO Hongjing, et al. A synthesizing method for porous carbon nanofibers reinforced with copper clusters for electrocatalysis: 202210830032.9[P]. 2022-11-22. | |
[58] | LIU W, WANG L, LUO Y, et al. An alumina/polyacrylonitrile nanofibrous composite separator via high-efficiency electro-blown spinning and wet-laid technologies for improved lithium-ion batteries[J]. Journal of The Electrochemical Society, 2019, 166(16): A4088-A4096. |
[59] | LIU W, JU J, DENG N, et al. Designing inorganic-organic nanofibrous composite membrane for advanced safe Li-ion capacitors[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.135821. |
[60] | KANG J, YAN Z, GAO L, et al. Improved ionic conductivity and enhanced interfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers[J]. Energy Storage Materials, 2022, 53: 192-203. |
[61] |
YU W, DENG N, SHI D, et al. One-dimensional oxide nanostructures possessing reactive surface defects enabled a lithium-rich region and high-voltage stability for all-solid-state composite electrolytes[J]. ACS Nano, 2023, 17: 22872-22884.
doi: 10.1021/acsnano.3c07754 pmid: 37947375 |
[62] | JIA C, XU Z, LUO D, et al. Flexible ceramic fibers: recent development in preparation and application[J]. Advanced Fiber Materials, 2022, 4(4): 573-603. |
[1] | LIU Sitong, JIN Dan, SUN Dongming, LI Yixuan, WANG Yanhui, WANG Jing, WANG Yuan. Research progress of nanofiber structure prepared by electrospinning [J]. Journal of Textile Research, 2024, 45(06): 201-209. |
[2] | XU Zhenkai, MA Ming, LIN Duojia, LIU Hang, ZHANG Jianfeng, XIA Xin. Preparation and electrochemical properties of self-supporting polypyrrilone-based carbon fiber anode materials [J]. Journal of Textile Research, 2024, 45(06): 23-31. |
[3] | LI Zhikun, YU Ying, ZUO Yuxin, SHI Haoqin, JIN Yuzhen, CHEN Hongli. Analysis of flexoelectric effect of polyacrylonitrile/MoS2 composite film and its applications [J]. Journal of Textile Research, 2024, 45(05): 27-34. |
[4] | SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32. |
[5] | JIA Lin, DONG Xiao, WANG Xixian, ZHANG Haixia, QIN Xiaohong. Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane [J]. Journal of Textile Research, 2024, 45(04): 59-66. |
[6] | LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75. |
[7] | YANG Qi, DENG Nanping, CHENG Bowen, KANG Weimin. Preparation and application properties of dendritic sulfonated polyethersulfone fiber based composite solid electrolyte [J]. Journal of Textile Research, 2024, 45(03): 1-10. |
[8] | ZHAO Meiqi, CHEN Li, QIAN Xian, LI Xiaona, DU Xun. Preparation and performance of electrospun membrane for Cu(Ⅱ) detection [J]. Journal of Textile Research, 2024, 45(03): 11-18. |
[9] | TIAN Boyang, WANG Xiangze, YANG Yiwen, WU Jing. Preparation and thermal management properties of asymmetric structured fibrous membranes [J]. Journal of Textile Research, 2024, 45(02): 11-20. |
[10] | ZHOU Xinru, FAN Mengjing, YUE Xinyan, HONG Jianhan, HAN Xiao. Preparation of conductive micro-nano fiber composite yarns and their gas-sensitive properties [J]. Journal of Textile Research, 2024, 45(02): 52-58. |
[11] | CHEN Jiangping, GUO Chaoyang, ZHANG Qijun, WU Renxiang, ZHONG Lubin, ZHENG Yuming. Preparation and air filtration performance of electrospun polyamide 6/polystyrene composite membranes [J]. Journal of Textile Research, 2024, 45(01): 56-64. |
[12] | LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26. |
[13] | XU Zhihao, XU Danyao, LI Yan, WANG Lu. Research progress in nanofiber-based biosensors based on surface enhanced Raman spectroscopy [J]. Journal of Textile Research, 2023, 44(11): 216-224. |
[14] | WANG Xixian, GUO Tianguang, WANG Dengke, NIU Shuai, JIA Lin. Preparation and long-lasting performance of polyacrylonitrile/Ag composite nanofiber membrane for high efficiency filtration [J]. Journal of Textile Research, 2023, 44(11): 27-35. |
[15] | FAN Mengjing, WU Lingya, ZHOU Xinru, HONG Jianhan, HAN Xiao, WANG Jian. Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn [J]. Journal of Textile Research, 2023, 44(11): 67-73. |
|