Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (08): 18-25.doi: 10.13475/j.fzxb.20240400101

• Academic Salon Column for New Insight of Textile Science and Technology: Advanced Nonwovens and Technology • Previous Articles     Next Articles

Preparation and performance of electrospun sodium alginate composite nanofiber membranes

QIAN Yang, ZHANG Lu, LI Chenyang, WANG Rongwu()   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-04-01 Revised:2024-05-12 Online:2024-08-15 Published:2024-08-21
  • Contact: WANG Rongwu E-mail:wrw@dhu.edu.cn

Abstract:

Objective This study aimed to harness the biocompatibility, biodegradability, and anti-adhesion properties of sodium alginate (SA) for potential use in wound dressings. Utilizing environmentally friendly deionized water as a solvent, a composite nanofiber membrane of SA, polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP) was fabricated through a modified small linear trough electrospinning device. The research focused on optimizing the solution's conductivity, fiber morphology, and diameter distribution of the spinning solution to enhance the spinnability of the SA solution and improve the functional properties of the final membrane.

Method The optimal solution mixture was determined through the analysis of solution conductivity, fiber morphology, and diameter distribution. The prepared nanofiber membranes were crosslinked by 3.0% anhydrous ethanol solution of calcium chloride (CaCl2) for varying durations (0, 2, 4, 8, 12, 24 h). After post-treatment, the samples were systematically analyzed for microscopic morphology, chemical structure, swelling behavior, and structural stability to evaluate the effects of cross-linking on membrane properties.

Results With a mass ratio of 1∶ 4 between SA and PEO, 4% total solute mass fraction, and PVP constituting 10% of the total solute mass, the SA/PEO/PVP composite nanofiber membranes exhibited uniform morphology with fibers averaging 240 nm in diameter and forming a three-dimensional interwoven network. This network structure was crucial for achieving significant mechanical strength and durability. Cross-linking for 24 h resulted in enhanced water resistance and structural stability, with a swelling ratio of 1 050.80% and a mass loss rate of 40.63%, indicating superior physical properties.

Conclusion The study successfully developed SA/PEO/PVP composite nanofiber membranes with excellent morphology and enhanced performance after CaCl2 cross-linking. The introduction of PEO and PVP not only improved the spinnability of SA but also contributed to the compatibility within the composite, underscoring the potential of these membranes as substrates for wound healing applications. This research emphasizes the innovation of using deionized water as a solvent in a non-toxic spinning process, addressing environmental concerns related to organic solvents. This provides strong evidence for promoting wound healing in accordance with the principles of moist wound healing and offers new insights and directions for the development of advanced wound care solutions.

Key words: electrospinning, sodium alginate, polyethylene oxide, polyvinylpyrrolidone, nanofiber membrane, cross-linking modification, wound dressing

CLC Number: 

  • TQ340

Fig.1

Three-dimensional image of electrospinning machine"

Fig.2

SEM images and diameter distribution graphs of electrospun nanofibers prepared from SA/PEO solutions at different volume ratios"

Tab.1

Diameter distribution parameters of different proportions of SA/PEO electro-spinning fibers"

SA与PEO体积比 平均直径/nm 极差/μm CV值/%
30∶70 300 0.64 49.94
40∶60 320 0.67 47.39
50∶50 300 0.59 46.41
60∶40 300 0.62 50.64
70∶30 300 0.74 50.61

Fig.3

Influence of PVP mass fraction on conductivity of spinning fluid"

Fig.4

SEM image and diameter distribution of SA/PEO/PVP composite nanofibers prepared by optimal process"

Fig.5

Microscopic morphology of SA/PEO/PVP composite nanofiber membranes after cross-linking treatment with CaCl2 for different durations"

Fig.6

Swelling ratio(a) and mass loss percentage(b) of composite nanofiber membranes after 24 h of treatment in PBS solution at different cross-linking times"

Fig.7

Infrared spectroscopy images of SA and composite nanofiber membranes before and after cross-linking modification"

Fig.8

Influence of temperatures and soaking times on stability of SA/PEO/PVP composite nanofiber membranes"

[1] MEHMET Evren Okur, IOANNIS D Karantas, PANORAIA I Siafaka, et al. Recent trends on wound management: new therapeutic choices based on polymeric carriers[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(6): 661-684.
doi: 10.1016/j.ajps.2019.11.008 pmid: 33363624
[2] ZAHEDI P, REZAEIAN I, RANAEI-SIADAT SO, et al. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages[J]. Polymers for Advanced Technologies, 2010.DOI:10.1002/pat.1625.
[3] 朱鹏, 张兴群, 王云龙, 等. 海藻酸盐医用敷料研究进展[J]. 上海纺织科技, 2020, 48(11): 13-18.
ZHU Peng, ZHANG Xingqun, WANG Yunlong, et al. Progress in research on alginate medical dressings[J]. Shanghai Textile Science & Technology, 2020, 48(11): 13-18.
[4] 吴洋, 刘方恬, 曹孟杰, 等. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(3): 8-16.
WU Yang, LIU Fangtian, CAO Mengjie, et al. Research progress on biomass fiber medical dressings[J]. Journal of Textile Research, 2022, 43(3): 8-16.
[5] 何劲, 陈莉, 刘玉森. 静电纺丝在多组分医用敷料中的应用及进展[J]. 纺织科技进展, 2020(7): 1-4.
HE Jin, CHEN Li, LIU Yusen. Application and progress of electrospinning in multicomponent medical dressings[J]. Advances in Textile Technology, 2020(7): 1-4.
[6] 刘鹏. 静电纺丝在生物医用材料领域的应用综述[J]. 山东纺织经济, 2020(4): 26-28, 39.
LIU Peng. A review of the application of electrospinning in the field of biomedical materials[J]. Shandong Textile Economy, 2020(4): 26-28,39.
[7] ZHANG X, WANG Y, GAO Z, et al. Advances in wound dressing based on electrospinning nanofibers[J]. Journal of Applied Polymer Science, 2023.DOI:10.1002/app.54746.
[8] FERNANDO S P I, LEE W, HAN J E, et al. Alginate-based nanomaterials: fabrication techniques, properties, and applications[J]. Chemical Engineering Journal, 2020, 391: 123823-123823.
[9] ALEJANDRO H, ALJABALI A A A, VIJAY M, et al. Alginate: enhancement strategies for advanced applications[J]. International Journal of Molecular Sciences, 2022, 23(9): 4486-4486.
[10] VIVIANA U, NATALY M, FERNANDO A, et al. Bacterial alginate production: an overview of its biosynthesis and potential industrial production[J]. World Journal of Microbiology Biotechnology, 2017. DOI:10.1007/s11274-2017-2363-x.
[11] 马肖. 海藻酸钠纺丝原液粘度研究[J]. 纺织科学研究, 2016(9): 92-93.
MA Xiao. Study on the viscosity of sodium alginate spinning solution[J]. Textile Science Research, 2016(9): 92-93.
[12] 杨锦铸. 海藻酸钠基多级结构纳米纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2023: 1-20.
YANG Jinzhu. Preparation and performance study of sodium alginate-based hierarchical nano fiber membranes[D]. Qingdao: Qingdao University, 2023: 1-20.
[13] 王春红, 李明, 龙碧旋, 等. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(5): 16-22.
WANG Chunhong, LI Ming, LONG Bixuan, et al. Preparation and properties of polyvinyl alcohol/sodium alginate/berberine medical dressings[J]. Journal of Textile Research, 2021, 42(5): 16-22.
[14] TAEMEH A M, SHIRAVANDI A, KORAYEM A M, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2019.115419.
[15] JANJA Mirtič, HELENA Balažic, ŠPELA Zupančič, et al. Effect of solution composition variables on electrospun alginate nanofibers: response surface analysis[J]. Polymers, 2019. DOI:10.3390/polym11040692.
[16] 査艳凤, 钱洁, 候大寅. CS/PVP复合纳米纤维膜的制备及其表征[J]. 安徽工程大学学报, 2015, 30(2): 75-79.
ZHA Yanfeng, QIAN Jie, HOU Dayin. Preparation and characterization of CS/PVP composite nanofiber membranes[J]. Journal of Anhui University of Technology, 2015, 30(2): 75-79.
[17] CHANEZ B, SYLVIE D, LAURENT P, et al. Advances on alginate use for spherification to encapsulate biomolecules[J]. Food Hydrocolloids, 2021. DOI:10.1016/j.foodhyd.2021.106782.
[18] CHUHUAN H, WEI L, ANALUCIA M, et al. Ions-induced gelation of alginate: mechanisms and applications[J]. International Journal of Biological Macromolecules, 2021, 177: 578-588.
doi: 10.1016/j.ijbiomac.2021.02.086 pmid: 33617905
[19] COSTA J M, MARQUES M A, PASTRANA M L, et al. Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio[J]. Food Hydrocolloids, 2018, 81: 442-448.
[20] 覃小红, 魏亮, 王荣武. 一种直线形槽状无针式静电纺丝装置及纺丝方法:106048749A[P]. 2016-10-26.
QIN Xiaohong, WEI Liang, WANG Rongwu. A linear groove needleless electrospinning device and spinning method: 106048749A[P]. 2016-10-26.
[21] 谈澄康. CS/PVA-海藻酸盐复合止血敷料的制备及性能研究[D]. 上海: 东华大学, 2020: 1-20.
TAN Chengkang. Preparation and properties study of CS/PVA-alginate composite hemostatic dressing[D]. Shanghai: Donghua University, 2020: 1-20.
[22] 汪希铭, 程凤, 高晶, 等. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
WANG Ximing, CHENG Feng, GAO Jing, et al. The effect of cross-linking modification on the properties of chitosan/polyethylene oxide nanofiber membranes for dressing application[J]. Journal of Textile Research, 2020, 41(12): 31-36.
doi: 10.13475/j.fzxb.20200203306
[23] 赵新哲, 王绍霞, 高晶, 等. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(4): 33-41.
ZHAO Xinzhe, WANG Shaoxia, GAO Jing, et al. Preparation and properties of electrospun collagen/polyethylene oxide nanofiber membranes[J]. Journal of Textile Research, 2021, 42(4): 33-41.
[24] SHI Xinyu, SU Siyang, XU Jianxiong, et al. Preparation and properties of a multi-crosslinked chitosan/sodium alginate composite hydrogel[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2023:135414.
[25] JAVIER GG, ESTHER GC, NARESH M, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters, 2020, 270: 127662-127662.
[1] WANG Yongzheng, HUANG Lintao, SONG Fuquan. Process optimization and properties of petroleum pitch/polyacrylonitrile electrospun carbon nanofibers [J]. Journal of Textile Research, 2024, 45(08): 107-115.
[2] YAN Di, WANG Xuefang, TAN Wenping, GAO Guojin, MING Jinfa, NING Xin. Preparation of porous poly(L-lactic acid) nanofiber membranes with rich imidazole groups and dual performances in water purification [J]. Journal of Textile Research, 2024, 45(08): 116-126.
[3] LIU Jiawei, JI Dongxiao, QIN Xiaohong. Research progress in electrospun nanofiber materials for air filtration [J]. Journal of Textile Research, 2024, 45(08): 35-43.
[4] LIU Delong, WANG Hongxia, LIN Tong. Research progress in airflow-assisted electrospinning [J]. Journal of Textile Research, 2024, 45(08): 44-53.
[5] YANG Peiqin, PAN Zhijuan. Preparation of eugenol/mulberry micro-nanofibers membrane and its performance [J]. Journal of Textile Research, 2024, 45(08): 72-80.
[6] YU Wen, DENG Nanping, TANG Xiangquan, KANG Weimin, CHENG Bowen. Review on preparation and applications of electro-blown spun micro-nano inorganic fibers [J]. Journal of Textile Research, 2024, 45(07): 230-239.
[7] LIU Sitong, JIN Dan, SUN Dongming, LI Yixuan, WANG Yanhui, WANG Jing, WANG Yuan. Research progress of nanofiber structure prepared by electrospinning [J]. Journal of Textile Research, 2024, 45(06): 201-209.
[8] XU Zhenkai, MA Ming, LIN Duojia, LIU Hang, ZHANG Jianfeng, XIA Xin. Preparation and electrochemical properties of self-supporting polypyrrilone-based carbon fiber anode materials [J]. Journal of Textile Research, 2024, 45(06): 23-31.
[9] XU Jiahui, GUO Xiaoqing, WANG Wei, WANG Huaifang, ZHANG Chuanjie, GONG Zhaoqing. Preparation of alginate nano montmorillonite modified fiber and its strengthening and toughening mechanisms [J]. Journal of Textile Research, 2024, 45(06): 16-22.
[10] LI Zhikun, YU Ying, ZUO Yuxin, SHI Haoqin, JIN Yuzhen, CHEN Hongli. Analysis of flexoelectric effect of polyacrylonitrile/MoS2 composite film and its applications [J]. Journal of Textile Research, 2024, 45(05): 27-34.
[11] JIA Lin, DONG Xiao, WANG Xixian, ZHANG Haixia, QIN Xiaohong. Preparation and performance of polycaprolactone/MgO composite nanofibrous filter membrane [J]. Journal of Textile Research, 2024, 45(04): 59-66.
[12] LU Yaoyao, YE Juntao, RUAN Chengxiang, LOU Jin. Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material [J]. Journal of Textile Research, 2024, 45(04): 67-75.
[13] LIANG Wenjing, WU Junxian, HE Yin, LIU Hao. Preparation and performance of ion sensors based on composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(04): 15-23.
[14] SONG Beibei, ZHAO Haoyue, LI Xinyu, QU Zhan, FANG Jian. Application of MXene-loaded cobalt-nitrogen doped carbon nanofibers in lithium-sulfur batteries [J]. Journal of Textile Research, 2024, 45(04): 24-32.
[15] YANG Qi, DENG Nanping, CHENG Bowen, KANG Weimin. Preparation and application properties of dendritic sulfonated polyethersulfone fiber based composite solid electrolyte [J]. Journal of Textile Research, 2024, 45(03): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!