Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (09): 10-17.doi: 10.13475/j.fzxb.20230602601
• Fiber Materials • Previous Articles Next Articles
WANG Yujia1,2,3,4, WANG Yi2,3,4, WANG Yasi2,3, DAI Fangyin1,2,3,4, LI Zhi2,3,4()
CLC Number:
[1] |
YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Nano, 2021, 15 (7): 11555-11563.
doi: 10.1021/acsnano.1c01606 pmid: 34128640 |
[2] | WANG G, ZHANG Q, WANG Q, et al. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 24173-24182. |
[3] | WEI C, LIN W, LIANG S, et al. An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00875-9. |
[4] | LI J X, LIU Y X, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606: 94-101. |
[5] | 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021. DOI: 10.7498/aps.70.20210023. |
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021. DOI: 10.7498/aps.70.20210023. | |
[6] | DUAN Z H, JIANG Y D, HUANG Q, et al. Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: eco-friendly, low-cost and high-performance piezoresistive sensor[J]. Cellulose, 2021, 28 (10): 6389-6402. |
[7] | LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with mxene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. |
[8] | HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B:Engineering, 2021. DOI: 10.1016/j.compositesb.2021.108607. |
[9] | XU M T, CAI H H, LIU Z L, et al. Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection[J]. International Journal of Biological Macromolecules, 2022, 194: 755-762. |
[10] |
WANG Z W, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8 (16): 3437-3459.
doi: 10.1039/c9tb02570g pmid: 32100788 |
[11] | CAI H, WANG Y, XU M, et al. Low cost, green and effective preparation of multifunctional flexible silk fabric electrode with ultra-high capacitance retention[J]. Carbon, 2022, 188: 197-208. |
[12] | WU R, MA L, PATIL A, et al. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers[J]. ACS Applied Materials & Interfaces, 2019, 11 (36): 33336-33346. |
[13] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
[14] | WU Z G, WEI L S, TANG S W, et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors[J]. ACS Nano, 2021, 15 (12): 18880-18894. |
[15] | LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905197. |
[16] | BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A, 2020, 8 (38): 20030-20036. |
[17] |
DIONIGI C, POSATI T, BENFENATI V, et al. A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes[J]. Journal of Materials Chemistry B, 2014, 2 (10): 1424-1431.
doi: 10.1039/c3tb21172j pmid: 32261458 |
[18] | LIU Z, SHANG S, CHIU K-l, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308. |
[19] | 方方, 朱小丹, 王梦颖. 一种新型柔性织物传感器的静态性能测试与评估[J]. 丝绸, 2019, 56(8):13-18. |
FANG Fang, ZHU Xiaodan, WANG Mengying. Static performance test and evaluation of a new flexible fabric sensor[J]. Journal of Silk, 2019, 56(8): 13-18. | |
[20] | LIU Y, TAO L Q, WANG D Y, et al. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure[J]. Applied Physics Letters, 2017. DOI: 10.1063/1.4978374. |
[21] | XU M, CAI H, LIU Z, et al. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection[J]. Advanced Electronic Materials, 2021. DOI: 10.1002/aelm.202100368. |
[22] | ZHANG H M, ZHANG Y, ZHANG J W, et al. Preparation and characterization of flexible pressure sensor based on silver nanowires/nonwoven fabric[J]. Polymer Composites, 2021, 42 (5): 2523-2530. |
[1] | WANG Xiaodong, CHEN Junpeng, PEI Zeguang. Method for solving crosstalk in fabric pressure sensor array based on U-Net convolutional neural network [J]. Journal of Textile Research, 2024, 45(07): 86-93. |
[2] | SHI Chu, LI Jun, WANG Yunyi. Research progress on smart footwear for monitoring temperature in diabetic foot [J]. Journal of Textile Research, 2024, 45(07): 240-247. |
[3] | WANG Jian, ZHANG Rui, ZHENG Yingying, DONG Zhengmei, ZOU Zhuanyong. Research progress of flexible textile pressure sensor based on MXene [J]. Journal of Textile Research, 2024, 45(06): 219-226. |
[4] | LIU Shu, HOU Teng, ZHOU Lele, LI Xianglong, YANG Bin. Properties of Bombyx mori silkworm silk obtained by forced reeling [J]. Journal of Textile Research, 2024, 45(06): 11-15. |
[5] | LIU Huanhuan, MENG Hu, WANG Zhaohui. Progress and trends in application of wearable technology for elderly population [J]. Journal of Textile Research, 2024, 45(03): 236-243. |
[6] | YAN Pengxiang, CHEN Fuxing, LIU Hong, TIAN Mingwei. Preparation of flexible force-sensing electronic textiles and construction of human motion monitoring system [J]. Journal of Textile Research, 2024, 45(02): 59-66. |
[7] | CHEN Lu, SHI Bao, WEI Sainan, JIA Lixia, YAN Ruosi. Energy storage performance of three-dimensional integrated knitted supercapacitor [J]. Journal of Textile Research, 2024, 45(02): 126-133. |
[8] | JIA Liping, LI Ming, LI Weilong, RAN Jianhua, BI Shuguang, LI Shiwei. Strain-sensing and electrothermal difunctional core-spun yarn based on long silver nanowires [J]. Journal of Textile Research, 2023, 44(10): 113-119. |
[9] | LI Long, ZHANG Xian, WU Lei. Research progress in preparation and application of conductive yarn materials [J]. Journal of Textile Research, 2023, 44(07): 214-221. |
[10] | LIU Huanhuan, WANG Zhaohui, YE Qinwen, CHEN Ziwei, ZHENG Jingjin. Progress and trends in application of wearable technology for emotion recognition [J]. Journal of Textile Research, 2022, 43(08): 197-205. |
[11] | LIN Meixia, WANG Jiawen, XIAO Shuang, WANG Xiaoyun, LIU Hao, HE Yin. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor [J]. Journal of Textile Research, 2022, 43(02): 61-68. |
[12] | YU Rufang, HONG Xinghua, ZHU Chengyan, JIN Zimin, WAN Junmin. Electrical heating properties of fabrics coated by reduced graphene oxide [J]. Journal of Textile Research, 2021, 42(10): 126-131. |
[13] | CHEN Zujiao, ZHANG Rui, ZHUO Wenwen, ZHANG Longlin, ZHOU Li. Research progress in wearable plantar pressure monitoring system [J]. Journal of Textile Research, 2021, 42(09): 31-38. |
[14] | YAN Tao, PAN Zhijuan. Strain sensing performance for thin and aligned carbon nanofiber membrane [J]. Journal of Textile Research, 2021, 42(07): 62-68. |
[15] | ZHOU Xinru, ZHOU Xiaoya, MA Yongjian, HU Chengye, ZHAO Xiaoman, HONG Jianhan, HAN Xiao. Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam [J]. Journal of Textile Research, 2021, 42(04): 62-68. |
|