Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (10): 224-231.doi: 10.13475/j.fzxb.20231006502
• Comprehensive Review • Previous Articles Next Articles
LI Meng1, DAI Mengnan1, YU Yangxiao1, WANG Jiannan1,2()
CLC Number:
[1] | XIE C, YE J, LIANG R J, et al. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.202100408. |
[2] | MA P F, WU W J, WEI Y, et al. Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering[J]. Materials & Design, 2021. DOI: 10.1016/j.matdes.2021.109865. |
[3] | JEYAKUMAR V, AMRAISH N, NICULESCU-MORSZA E, et al. Decellularized cartilage extracellular matrix incorporated silk fibroin hybrid scaffolds for endochondral ossification mediated bone regenera-tion[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms.22084055. |
[4] | WU S L, LIU X M, YEUNG K W K, et al. Biomimetic porous scaffolds for bone tissue engineering[J]. Materials Science and Engineering R: Reports, 2014, 80(1): 1-36. |
[5] |
MA H S, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2018, 79: 37-59.
doi: S1742-7061(18)30493-8 pmid: 30165201 |
[6] |
WUBNEH A, TSEKOURA E K, AYRANCI C, et al. Current state of fabrication technologies and materials for bone tissue engineering[J]. Acta Biomaterialia, 2018, 80: 1-30.
doi: S1742-7061(18)30551-8 pmid: 30248515 |
[7] | ZHANG D W, WU X W, CHEN J D, et al. The development of collagen based composite scaffolds for bone regeneration[J]. Bioactive Materials, 2017, 3(1): 129-138. |
[8] |
BALAGANGADHARAN K, CHANDRAN S V, ARUMUGAM B, et al. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration[J]. International Journal of Biological Macromolecules, 2018, 111: 953-958.
doi: S0141-8130(18)30019-9 pmid: 29415417 |
[9] | 杨思敏, 王新卫. 自体骨移植修复骨缺损的临床研究进展[J]. 中国疗养医学, 2019, 9: 945-948. |
YANG Simin, WANG Xinwei. Clinical research progress of autogenous bone transplantation for repairing bone defect[J]. Chinese Journal of Convalescent Medicine, 2019, 9: 945-948. | |
[10] |
ROBERTS T T, ROSENBAUM A J. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing[J]. Organogenesis, 2012, 8(4): 114-124.
doi: 10.4161/org.23306 pmid: 23247591 |
[11] | 胡居正, 石展英, 杨成志. 同种异体骨移植治疗骨缺损的应用研究进展[J]. 基层医学论坛, 2017, 19: 2570-2572. |
HU Juzheng, SHI Zhanying, YANG Chengzhi. Application and research progress of allogeneic bone transplantation for the treatment of bone defect[J]. The Medical Forum, 2017, 19: 2570-2572. | |
[12] |
东家慧, 谭丽丽, 杨柯. 可降解镁基金属骨缺损修复材料的研究探索[J]. 金属学报, 2017, 53(10): 1197-1206.
doi: 10.11900/0412.1961.2017.00279 |
DONG Jiahui, TAN Lili, YANG Ke. Research of biodegradable mg-based metals as bone graft substitutes[J]. Acta Metallurgica Sinica, 2017, 53(10): 1197-1206.
doi: 10.11900/0412.1961.2017.00279 |
|
[13] | 韦章澳, 徐凌寒, 吴子辰, 等. 无机非金属人工骨修复材料的体内应用[J]. 中国组织工程研究, 2022, 16: 2706-2712. |
WEI Zhang'ao, XU Linghan, WU Zichen, et al. Application of inorganic nonmetallic artificial bone materials in vivo[J]. Chinese Journal of Tissue Engineering Research, 2022, 16: 2706-2712. | |
[14] | ZHAO Y, ZHAO S N, MA Z X, et al. Chitosan-based scaffolds for facilitated endogenous bone regenera-tion[J]. Pharmaceuticals, 2022. DOI: 10.3390/ph15081023. |
[15] | GAO H C, GE K K, XU Y Q, et al. Controlled release of minocycline in hydroxyapatite/chitosan composite for periodontal bone defect repair[J]. Dental Materials Journal, 2022, 41(3): 346-352. |
[16] | CHENG Y, CHENG G, XIE C Y. Biomimetic silk fibroin hydrogels strengthened by silica nanoparticles distributed nanofibers facilitate bone repair[J]. Advanced Healthcare Materials, 2021. DOI:10.1002/adhm.202001646. |
[17] | WANG C L, MENG C Y, ZHANG Z, et al. 3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair[J]. Ceramics International, 2022, 48(6): 7491-7499. |
[18] | LI B, QU M Y, YANG H C, et al. Biomimetic mineralization of poly(L-lactic acid) nanofibrous microspheres for bone regeneration[J]. Materials Today Communications, 2022. DOI: 10.1016/j.mtcomm.2022.104682. |
[19] | CARMAGNOLA I, NARDO T, GENTILE P. Poly(lactic acid)-based blends with tailored physicochemical properties for tissue engineering application: a case study[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64(2): 90-98. |
[20] | 罗元泽, 戴梦男, 李蒙, 等. 丝素蛋白基药物载体的应用研究进展[J]. 纺织学报, 2023, 44(9): 213-222. |
LUO Yuanze, DAI Mengnan, LI Meng, et al. Application of silk fibroin-based biomaterials for drug delivery[J]. Journal of Textile Research, 2023, 44(9): 213-222. | |
[21] | 黄利. 丝素蛋白仿生组织工程支架的成型、结构与性能研究[D]. 上海: 东华大学, 2020: 7-8. |
HUANG Li. Preparation, structures and properties of silk fibroin based biomimetic tissue engineering sca-ffolds[D]. Shanghai: Donghua University, 2020: 7-8. | |
[22] | 于成龙, 关国平, 余劭婷, 等. 丝素分子的构象转变及自组装行为[J]. 生物医学工程学进展, 2017, 38(3): 159-163. |
YU Chenglong, GUAN Guoping, YU Shaoting, et al. Conformation transition and self-assembly of silk fibroin[J]. Progress in Biomedical Engineering, 2017, 38(3): 159-163. | |
[23] |
MELKE J, MIDHA S, GHOSH S, et al. Silk fibroin as biomaterial for bone tissue engineering[J]. Acta Biomaterialia, 2016, 31: 1-16.
doi: S1742-7061(15)30098-2 pmid: 26360593 |
[24] | 陈智洋, 叶军, 王洪亮, 等. 基于丝素蛋白的纳米粒药物递送系统研究进展[J]. 药学学报, 2022, 6: 1792-1800. |
CHEN Zhiyang, YE Jun, WANG Hongliang, et al. Research progress of silk fibroin-based nanoparticulate drug delivery systems[J]. Acta Pharmaceutica Sinica, 2022, 6: 1792-1800. | |
[25] | 高舒颖, 徐莹颖, 李曦. 基于丝素蛋白的新型药物递送系统研究进展[J]. 药学与临床研究, 2021, 5: 371-376. |
GAO Shuying, XU Yingying, LI Xi. Advances in silk fibroin-based novel drug delivery systems[J]. Pharmaceutical and Clinical Research, 2021, 5: 371-376. | |
[26] |
LIU L, YU F, LI L, et al. Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis[J]. Acta Biomaterialia, 2021, 119: 444-457.
doi: 10.1016/j.actbio.2020.10.038 pmid: 33129987 |
[27] | DONG Y, LIU Y, CHEN Y, et al. Spatiotemporal regulation of endogenous MSCs using a functional injectable hydrogel system for cartilage regeneration[J]. NPG Asia Materials, 2021. DOI: 10.1038/s41427-021-00339-3. |
[28] | FAN Z H, LIU H X, SHI S L, et al. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration[J]. Materials Today Bio, 2022. DOI: 10.1016/j.mtbio.2022.100283. |
[29] | 千建峰, 蔡丽慧, 亓卫东, 等. 不同孔径丝素蛋白支架体内降解观察[J]. 中国生物医学工程学报, 2016, 4: 507-511. |
QIAN Jianfeng, CAI Lihui, QI Weidong, et al. Degradation behaviors of silk fibroin scaffolds with different pore sizes in vivo[J]. Chinese Journal of Biomedical Engineering, 2016, 4: 507-511. | |
[30] | WANG J N, LIU Z W, YANG Y X, et al. Enzymatic degradation behavior of silk fibroin fiber treated by gamma-ray irradiation[J]. Textile Research Journal, 2012, 82(17): 1799-1805. |
[31] |
SENGUPTA S, PARK S H, SEOK G E, et al. Quantifying osteogenic cell degradation of silk biomaterials[J]. Biomacromolecules, 2010, 11(12): 3592-3599.
doi: 10.1021/bm101054q pmid: 21105641 |
[32] | WANG L P, LUO Z W, ZHANG Q, et al. Effect of degumming methods on the degradation behavior of silk fibroin biomaterials[J]. Fibers and Polymers, 2019, 20(1): 45-50. |
[33] | LI M, TIAN W, YU Y X, et al. Effect of degumming degree on the structure and tensile properties of RSF/RSS composite films prepared by one-step extraction[J]. Scientific Reports, 2023. DOI: 10.1038/s41598-023-33844-2. |
[34] | WANG Q, XU J X, JIN H M, et al. Artificial periosteum in bone defect repair: a review[J]. Chinese Chemical Letters, 2017, 28 (9): 1801-1807. |
[35] | YANG G J, LIU H M, CUI Y, et al. Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration[J]. Biomaterials, 2021. DOI: 10.1016/j.biomaterials.2020.120561. |
[36] | LI M, TIAN W, ZHANG Y, et al. Enhanced silk fibroin/sericin composite film: preparation, mechanical properties and mineralization activity[J]. Polymers, 2022. DOI: 10.3390/polym14122466. |
[37] |
ZHENG X, KE X, YU P, et al. A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity[J]. Journal of Materials Chemistry B, 2020, 8(45): 10407-10415.
doi: 10.1039/d0tb01962c pmid: 33112359 |
[38] |
REAKASAME S, BOCCACCINI A R. Oxidized alginate-based hydrogels for tissue engineering applications: a review[J]. Biomacromolecules, 2018, 19(1): 3-21.
doi: 10.1021/acs.biomac.7b01331 pmid: 29172448 |
[39] | ZHANG X Y, XIAO L Y, DING Z Z, et al. Engineered tough silk hydrogels through assembling β-sheet rich nanofibers based on a solvent replacement strategy[J]. ACS Nano, 2022, 16: 10209-10218. |
[40] | SRISAWASDI T, PETCHAROEN K, SIRIVAT A, et al. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material[J]. Materials Science & Engineering C: Materials For Biological Applications, 2015, 56: 1-8. |
[41] | ELLIOTT W H, BONANI W, MANIGLIO D, et al. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 12099-12108. |
[42] |
MCGILL M, COBURN J M, PARTLOW B P, et al. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design[J]. Acta Biomaterialia, 2017, 63: 76-84.
doi: S1742-7061(17)30583-4 pmid: 28919509 |
[43] | WANG Y, YANG Z Y, CHEN X, et al. Silk fibroin hydrogel membranes prepared by a sequential cross-linking strategy for guided bone regeneration[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023. DOI: 10.1016/j.jmbbm.2023.106133. |
[44] | ZHAN J L, SUN X D, CUI F Z, et al. Preparation of 3-D porous fibiroin scaffolds by freeze drying with treatment of methanol solutions[J]. Chinese Science Bulletin, 2007, 52(13): 1791-1795. |
[45] |
OLIVEIRA A L, SUN L, KIM H J, et al. Aligned silk-based 3-D architectures for contact guidance in tissue engineering[J]. Acta Biomaterialia, 2012, 8: 1530-1542.
doi: 10.1016/j.actbio.2011.12.015 pmid: 22202909 |
[46] |
FAN L P, LI J L, CAI Z X, et al. Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization[J]. ACS Nano, 2018, 12: 5780-5790.
doi: 10.1021/acsnano.8b01648 pmid: 29846058 |
[47] | DEININGER C, WAGNER A, HEIMEL P, et al. Enhanced BMP-2-mediated bone repair using an anisotropic silk fibroin scaffold coated with bone-like apatite[J]. International Journal of Molecular Sciences, 2022. DOI: 10.3390/ijms23010283. |
[48] |
PARK H J, LEE O J, LEE M C, et al. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction[J]. International Journal of Biological Macromolecules, 2015, 78: 215-223.
doi: 10.1016/j.ijbiomac.2015.03.064 pmid: 25849999 |
[49] |
CORREIA C, BHUMIRATANA S, YAN L P, et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells[J]. Acta Biomaterialia, 2012, 8(7): 2483-2492.
doi: 10.1016/j.actbio.2012.03.019 pmid: 22421311 |
[50] | 耿亚楠, 赵梦露, 姚响, 等. 强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发[J]. 功能高分子学报, 2023(2): 107-116. |
GENG Yanan, ZHAO Menglu, YAO Xiang, et al. Development of silk fibroin-based bio-inks for strong scaffolds and 3D printing simulation software for scaffolds[J]. Journal of Functional Polymers, 2023(2): 107-116. | |
[51] | WANG Q, HAN G, YAN S, et al. 3D printing of silk fibroin for biomedical applications[J]. Materials, 2019. DOI: 10.3390/ma12030504. |
[52] | SUN M Y, CHI G F, XU J J, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5[J]. Stem Cell Research & Therapy, 2018. DOI: 10.1186/s13287-018-0798-0. |
[53] | YAN L P, SILVA-CORREIA J, OLIVEIRA M B, et al. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance[J]. Acta Biomaterialia, 2015, 12: 227-241. |
[54] |
YAN Z, CHEN W B, JIN W H, et al. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model[J]. Journal of Materials Chemistry B, 2021, 9(26): 5352-5364.
doi: 10.1039/d1tb01006a pmid: 34152356 |
[55] | JIN S, FU X X, ZENG W A, et al. Chopped fibers and nano-hydroxyapatite enhanced silk fibroin porous hybrid scaffolds for bone augmentation[J]. Journal of Materials Chemistry B, 2023, 11(7): 1557-1567. |
[56] |
YAO Y K, GUAN D Q, ZHANG C K, et al. Silkworm spinning inspired 3D printing toward a high strength scaffold for bone regeneration[J]. Journal of Materials Chemistry B, 2022, 10(36): 6946-6957.
doi: 10.1039/d2tb01161a pmid: 36069158 |
[57] | WU J N, CAO L Y, LIU Y, et al. Functionalization of silk fibroin electrospun scaffolds via bmsc affinity peptide grafting through oxidative self-polymerization of dopamine for bone regeneration[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8878-8895. |
[58] | SARTIKA D, WANG C H, WANG D H, et al. Human adipose-derived mesenchymal stem cells-incorporated silk fibroin as a potential bio-scaffold in guiding bone regeneration[J]. Polymers, 2020. DOI: 10.3390/polym12040853. |
[59] | YU X, WAN Q L, YE X L, et al. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling[J]. Cellular & Molecular Biology Letters, 2019. DOI: 10.1186/s11658-019-0191-8. |
[60] | SUN J C, LI L, XING F, et al. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration[J]. Stem Cell Research & Therapy, 2021. DOI: 10.1186/s13287-021-02634-w. |
[61] | WANG L, LIAN J, XIA Y J, et al. A study on in vitro and in vivo bioactivity of silk fibroin/nano-hydroxyapatite/graphene oxide composite scaffolds with directional channels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. DOI: 10.1016/j.colsurfa.2022.129886. |
[1] | LIU Ting, YAN Tao, PAN Zhijuan. Preparation and properties of banana stem fiber/antibacterial fiber blended yarn [J]. Journal of Textile Research, 2024, 45(10): 48-54. |
[2] | WANG Boxiang, XU Hangdan, LI Jia, LIN Jie, CHENG Dehong, LU Yanhua. Preparation and biocompatibility of temperature-sensitive composite membrane of tussah silk fibroin nanofiber [J]. Journal of Textile Research, 2024, 45(09): 18-25. |
[3] | XU Yusong, ZHOU Jie, GAN Jiayi, ZHANG Tao, ZHANG Xianming. Preparation of phosphorus and nitrogen containing waterborne polyurethane and its application in polyester fabrics for flame retardant finishing [J]. Journal of Textile Research, 2024, 45(07): 112-120. |
[4] | LIU Shu, HOU Teng, ZHOU Lele, LI Xianglong, YANG Bin. Properties of Bombyx mori silkworm silk obtained by forced reeling [J]. Journal of Textile Research, 2024, 45(06): 11-15. |
[5] | HUANG Qing, SU Zhenyue, ZHOU Yifan, LIU Qingsong, LI Yi, ZHAO Ping, WANG Xin. Analysis of silks from silkworms reared with artificial diet and mulberry leaves [J]. Journal of Textile Research, 2024, 45(05): 1-9. |
[6] | MA Chengnuo, JIANG Kaixiang, CHEN Chunhui, LIU Yuanling, ZHANG Youqiang. Analysis on mechanical properties and fracture morphology of Xinjiang long-staple cotton fiber [J]. Journal of Textile Research, 2024, 45(02): 36-44. |
[7] | GU Jinjun, WEI Chunyan, GUO Ziyang, LÜ Lihua, BAI Jin, ZHAO Hanghuiyan. Preparation and performonce of cotton stalk bast microcrystalline cellulose/modified graphene oxide composite flame-retardant fiber [J]. Journal of Textile Research, 2024, 45(01): 39-47. |
[8] | LEI Caihong, YU Linshuang, JIN Wanhui, ZHU Hailin, CHEN Jianyong. Preparation and application of silk fibroin/chitosan composite fiber membrane [J]. Journal of Textile Research, 2023, 44(11): 19-26. |
[9] | CHEN Meiyu, LI Lifeng, DONG Xia. Mechanical properties of long carbon chain polyamide 1012 fiber at different temperature fields [J]. Journal of Textile Research, 2023, 44(11): 9-18. |
[10] | ZHANG Zifan, LI Pengfei, WANG Jiannan, XU Jianmei. Research progress in silk fibroin drug-loaded nanoparticles [J]. Journal of Textile Research, 2023, 44(10): 205-213. |
[11] | YANG Qiliang, YANG Haiwei, WANG Dengfeng, LI Changlong, ZHANG Lele, WANG Zongqian. Fabrication and oil absorbency of superhydrophobic and elastic silk fibroin fibrils aerogel [J]. Journal of Textile Research, 2023, 44(09): 1-10. |
[12] | YAO Shuangshuang, FU Shaoju, ZHANG Peihua, SUN Xiuli. Preparation and properties of regenerated silk fibroin/polyvinyl alcohol blended nanofiber membranes with predesigned orientation [J]. Journal of Textile Research, 2023, 44(09): 11-19. |
[13] | LUO Yuanze, DAI Mengnan, LI Meng, YU Yangxiao, WANG Jiannan. Application of silk fibroin-based biomaterials for drug delivery [J]. Journal of Textile Research, 2023, 44(09): 213-222. |
[14] | ZHANG Ying, SONG Minggen, JI Hong, CHEN Kang, ZHANG Xianming. Influence of heat-setting process on structure and properties of high-tenacity polyester industrial yarns [J]. Journal of Textile Research, 2023, 44(09): 43-51. |
[15] | SUN Mingtao, CHEN Chengyu, YAN Weixia, CAO Shanshan, HAN Keqing. Influence of needling reinforcement frequency on properties of jute/polylactic acid fiber composite sheets [J]. Journal of Textile Research, 2023, 44(09): 91-98. |
|