Journal of Textile Research ›› 2024, Vol. 45 ›› Issue (10): 232-240.doi: 10.13475/j.fzxb.20230702202

• Comprehensive Review • Previous Articles     Next Articles

Research progress and future perspectives of polyphenylene sulfide fiber for bag filter

HE Yujing1,2(), KANG Jianping1,2, ZHAO Kunwei1, HE Yong1, LI Jiayi1, TAN Xin1,2   

  1. 1. Sichuan Textile Science Research Institute Co., Ltd., Chengdu, Sichuan 610083, China
    2. High-Tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu, Sichuan 610083, China
  • Received:2023-07-11 Revised:2024-06-24 Online:2024-10-15 Published:2024-10-22

Abstract:

Significance Polyphenylene sulfide (PPS) fiber serves as the main material for filter bags, a crucial core component of baghouse dust collectors. It is widely applied in the dust removal of high-temperature industrial flue gas, such as coal-fired boiler plants, municipal waste incineration plants, and power plants. With the increasingly stringent atmospheric emission standards in recent years, the mandatory implementation of ultra-clean flue gas emissions for certain industrial enterprises, as well as the application requirements for high performance, long service life, differentiated and multifunctional, there have been higher requirements for PPS fiber. However, to the best of our knowledge, no comprehensive overviews focused on the continuous development of PPS fibers for filter bag have been reported. For a more comprehensive understanding of the present development status of PPS fibers, this review provides a systematically investigation for the development history and current production capacity of it both domestically and internationally, the research progress and existing issues in the development of PPS fibers for baghouse dust removal. This paper aims to provide insights and guidance to promote the research, production, and application of differentiated functional PPS fiber for high-temperature dust removal in China.

Progress To meet practical application requirements, PPS fiber is developing towards finer and ultrafine deniers, profile fiber, and with antioxidant, catalytic and more functions. At present, the fineness of PPS ultrafine fibers can reach the micron or even nanometer level, and the fabrication methods mainly include melt-blown spinning, melt electrospinning, and sea-island melt spinning. Among them, melt-blown spinning is the most widely used method for the production of PPS ultrafine fibers due to its advantages of larger production output, shorter process, and lower cost. Although profiled PPS fibers include trilobal, Y-shaped, and split shapes currently, only trilobal PPS fibers are commercially available, with Japan's Toyobo being the sole manufacturer. The antioxidant modification of PPS fibers is aimed at addressing the problems of fiber fracture, mechanical strength degradation, and service life shortening of PPS filter when it is exposed to the gaseous components at high temperatures, and further enhance its structural stability in a harsh environment. Currently, the main approaches reported to improve the thermal and oxidation resistance of PPS fibers include surface film-forming method and direct addition method. The surface film-forming method refers to the surface treatment solution prepared by antioxidant, nanoparticle or high-performance resin dipping or spraying it on the surface of PPS fibers or nonwoven material to formulating an antioxidant protective layer. The direct method refers to melt spinning after blending the antioxidant, nanoparticle or high-performance resin with PPS resin directly. PPS-based filter bags with catalytic function are fabricated by loading catalysts such as manganese oxide (MnO2, Mn2O3) and cerium oxide (CeO2) to decorated PPS fibers or its needle-punching fibrous felts by using in-situ deposition, impregnation calcination and directed coating. It is aimed to achieve a novel integrated filtration material with compact structure and low cost that can provide both harmful gas purification and fine dust removal functions.

Conclusion and Prospect Study on key preparation technologies for differentiated and functional PPS fibers in China commenced relatively late. There are still some problems such as inadequate follow-up in fundamental research, imperfect and immature production processes, and poor product quality stability. Breakthrough in the key research areas and industrial production of differentiated functional PPS fibers such as fine/ultrafine deniers, profile, antioxidant, catalysis, is not only an urgent need for market applications, but also the requirements for the high-quality development of high-performance fiber during the "14th Five-Year Plan" period. Hence, to achieve independent production of differentiated functional PPS fibers, it is imperative for enterprises, universities, and research institutes to collaborate on fundamental raw materials, key equipment, production processes, and other aspects in a joint effort to overcome these challenges.

Key words: bag filter, polyphenylene sulfide fiber, ultrafine fiber, profiled fiber, antioxidantion, catalyze, filter bag material

CLC Number: 

  • TQ342

Tab.1

Major manufacturers and production capacity of PPS fibers domestically and internationally"

生产厂家 生产规模/
(t·a-1)
纤维种类
日本东丽株式会社 4 000 PPS短纤、长丝
日本东洋纺株式会社 3 000 PPS短纤、长丝、
异形纤维
美国纤维创新技术公司 1 000 PPS短纤
四川安费尔高分子材料
科技有限公司
7 500 PPS短纤
苏州金泉新材料股份
有限公司
3 000 纳米复合PPS短纤
浙江新和成股份有限公司 5 000 PPS短纤
敦煌西域特种新材股份
有限公司
1 500 PPS短纤

Fig.1

Schematic diagram of preparation for ultrafine PPS fibers. (a) Melt-blown spinning; (b) Electrospinning"

Fig.2

Original (a) and SEM (b) image of melt-electrospinning PPS ultrafine fiber"

Fig.3

Phase structure SEM images of PPS/PP blend fiber (a) and SEM images of PPS islands-in-sea fiber (b)"

Fig.4

SEM images of PPS fiber with different shapes. (a)Circular; (b)Trilobal; (c)Y-shape; (d)Split-shape"

Fig.5

Color change (a) and structure change(×200) (b) of PPS fiber after high temperature oxidation for different time"

[1] 费楷, 王桦, 覃俊, 等. 袋除尘纤维滤料在燃煤锅炉中的应用及使用建议[J]. 纺织科技进展, 2011, 150(2): 1-7.
FEI Kai, WANG Hua, QIN Jun, et al. The aplications and rcommendations of fbre flter mdia in cal-burning bilers' bg flters[J]. Progress in Textile Science & Technology, 2011, 150 (2): 1-7.
[2] SUN Z, SUN L, ZHU C, et al. Effect of polyphenylene sulphide particles and films on the properties of polyphenylene sulphide composites[J]. Materials, 2022. DOI: 10.3390/ma15217616.
[3] 王桦, 覃俊, 许久峰, 等. 使用工况条件对聚苯硫醚纤维滤料的影响[J]. 合成纤维, 2009, 38(9): 43-46.
WANG Hua, QIN Jun, XU Jiufeng, et al. Effect of conditions in application on PPS filter material[J]. Synthetic Fiber in China, 2009, 38(9): 43-46.
[4] RAHATE A S, NEMADE K R, WAGHULEY S A. Polyphenylene sulfide (PPS): state of the art and applications[J]. Reviews in Chemical Engineering, 2013, 29(6): 471-489.
[5] 陈昊光, 周诚, 马恩群, 等. 燃煤电厂用耐高温滤料的研究与应用前景分析[J]. 玻璃纤维, 2021(2): 34-39.
CHEN Haoguang, ZHOU Cheng, MA Enqun, et al. Research and potential application analysis of high temperature resistant chemical fiber filter material used in power industry[J]. Fiber Glass, 2021(2): 34-39.
[6] 叶光斗, 唐国强. 高性能聚苯硫醚(PPS)纤维的发展与应用[J]. 化工新型材料, 2007, 35(3): 79-82.
YE Guangdou, TANG Guoqiang. Development and application of high performance polyphenylene sul-fide (PPS) fiber[J]. New Chemical Materials, 2007, 35(3): 79-82.
[7] 袁宝庆, 钱明球. 聚苯硫醚及其纤维的开发与应用[J]. 合成技术及应用, 2007, 22(3): 49-53.
YUAN Baoqing, QIAN Mingqiu. Development and application of polyphenylene sulfide and its fiber[J]. Synthetic Technology & Application, 2007, 22(3): 49-53.
[8] 彭梓航. 聚苯硫醚细旦高强纤维的制备技术开发[D]. 上海: 东华大学, 2021: 1-2.
PENG Zihang. Development of preparation technology of polyphenylene sulfide denier high strength fiber[D]. Shanghai: Donghua University, 2021:1-2.
[9] 王桦, 覃俊, 陈丽萍. 聚苯硫醚纤维及其应用[J]. 合成纤维, 2012, 41(3): 7-12.
WANG Hua, QIN Jun, CHEN Liping. High performance polyphenylene sulfide fiber and its application[J]. Synthetic Fiber in China, 2012, 41(3): 7-12.
[10] 张宏, 李望, 赵和平, 等. 聚苯硫醚产业化发展分析[J]. 现代化工, 2019, 39(3): 5-8.
ZHANG Hong, LI Wang, ZHAO Heping, et al. Summary of industrialization development of polyphenylene sulfide[J]. Modern Chemical Industry. 2019, 39(3): 5-8.
[11] 李亚儒, 王冲. 国产聚苯硫醚纤维级树脂的开发[C]// 2015 全国袋式除尘技术研讨会论文集. 北京: 中国学术期刊电子出版社, 2015: 354-355.
LI Yaru, WANG Chong. Development of domestic polyphenylene sulfide fiber grade resin[C]// 2015 Proceedings of the National Symposium on bag dust removal technology. Beijing: China Academic Journal Electronic Publishing House, 2015: 354-355.
[12] 李文俊. 细旦聚苯硫醚(PPS)高性能短纤维的开发应用[J]. 纺织科技进展, 2017(5): 12-14.
LI Wenjun. Development and application of fine denier polyphenylene sulfide (PPS) high performance staple fibers[J]. Progress in Textile Science & Technology, 2017(5): 12-14.
[13] 彭梓航, 吴鹏飞, 黄庆. 聚苯硫醚纤维的制备及改性技术现状与展望[J]. 合成纤维工业, 2021, 44(3): 71-77.
PENG Zihang, WU Pengfei, HUANG Qing. Current status and outlook of preparation and modification of polyphenylene sulfide fiber[J]. China Synthetic Fiber Industry, 2021, 44(3): 71-77.
[14] 覃俊, 陈丽萍, 何勇. 聚苯硫醚熔喷超细纤维的应用前景展望[J]. 纺织科技进展, 2020(10): 1-5.
QIN Jun, CHEN Liping, HE Yong. Application prospect of polyphenylene sulfide melt-blown microfiber[J]. Progress in Textile Science & Technology, 2020(10): 1-5.
[15] 林盼龙. 基于聚苯硫醚熔喷超细纤维的光热纸及复合板的研究[D]. 武汉: 武汉纺织大学, 2021: 5-6.
LIN Panlong. Photothermal paper and composite board research based on the melt-blown superfine fiber of polyphenylene sulfide[D]. Wuhan: Wuhan Textile University, 2021: 5-6.
[16] YU Y, XIONG S W, HUANG H, et al. Fabrication and application of poly (phenylene sulfide) ultrafine fiber[J]. Reactive and Functional Polymers, 2020. DOI:10.1016/j.reactfunctpolym.2020.104539.
[17] 范作泽. 聚苯硫醚超细纤维的制备及其力学性能研究[D]. 青岛: 青岛大学, 2020: 5-6.
FAN Zuoze. Study on preparation and mechanical properties of micro-nano scale polyphenylene sulfide fibers[D]. Qingdao: Qingdao University, 2020: 5-6.
[18] AUERBACH A B, HARMON W S. Melt-blown polyphenylene sulfide microfibers and method of making the same: US 05695869A[P]. 1997-12-09.
[19] 陈磊. 聚苯硫醚(PPS)熔喷非织造布的制备与可纺性能研究[D]. 上海: 东华大学, 2012: 29-59.
CHEN Lei. Preparation and spinnability investigation of melt-blown polyphenylene sulfide (PPS)[D]. Shanghai: Donghua University, 2012: 29-59.
[20] YU Y, REN L P, LIU M, et al. Polyphenylene sulfide ultrafine fibrous membrane modified by nanoscale ZIF-8 for highly effective adsorption, interception, and recycling of iodine vapor[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31291-31301.
[21] 胡宝继, 刘凡, 邵伟力, 等. 聚苯硫醚熔喷可纺性的研究[J]. 上海纺织科技, 2019, 47(8): 29-31.
HU Baoji, LIU Fan, SHAO Weili, et al. Study on spinnability of polyphenylene sulfide melt-blown[J]. Shanghai Textile Science & Technology, 2019, 47(8): 29-31.
[22] 熊思维. 聚苯硫醚熔喷超细纤维的制备及其吸油性能研究[D]. 武汉: 武汉纺织大学, 2018: 20-23.
XIONG Siwei. Study on the preparation of melt blown polyphenylene sulfide ultrafine fiber and its oil absorptive properties[D]. Wuhan: Wuhan Textile University, 2018: 20-23.
[23] FAN Z Z, HE H W, YAN X, et al. Fabrication of ultrafine PPS fibers with high strength and tenacity via melt electrospinning[J]. Polymers, 2019. DOI: 10.3390/polym11030530.
[24] AN Y, YU S Y, LI S M, et al. Melt-electrospinning of polyphenylene sulfide[J]. Fibers and Polymers, 2018, 19(12): 2507-2513.
[25] 马文娟, 王锐, 张秀芹, 等. 聚苯硫醚纳米纤维的制备及其结构性能研究[J]. 合成纤维工业, 2014, 37(2): 6-9.
MA Wenjuan, WANG Rui, ZHANG Xiuqin, et al. Preparation and structural performance of polyphenylene sulfide nanofibers[J]. China Synthetic Fiber Industry, 2014, 37(2): 6-9.
[26] 万艳霞, 朱志国, 王锐, 等. 共混纺丝制聚苯硫醚超细纤维及其形态结构研究[J]. 合成纤维工业, 2015, 38(3): 34-37.
WAN Yanxia, ZHU Zhiguo, WANG Rui, et al. Preparation and morphology of polyphenylene sulfide ultrafine fiber by blend spinning[J]. China Synthetic Fiber Industry, 2015, 38(3): 34-37.
[27] 田菁. 高性能聚苯硫醚(PPS)纤维的制备与改性[D]. 上海: 东华大学, 2007: 36-37.
TIAN Jing. Study on the spinning and modification of polyphenylene sulfide (PPS) fiber[D]. Shanghai: Donghua University, 2007: 36-37.
[28] 梁珍, 沈恒根. 异型纤维和梯度滤料过滤性能分析[C]// 2019中国环境科学学会科学技术年会: 环境工程技术创新与应用分论坛论文集. 北京: 中国学术期刊电子出版社, 2019: 170-175.
LIANG Zhen, SHEN Henggen. Analysis of filtration performance of heterogeneous fibers and gradient filters[C]//2019 CSES Annual Conference on Environmental Science and Technology:Proceedings of the Environmental Engineering Technology Innovation and Application Sub-Forum. Beijing: China Academic Journal Electronic Publishing House, 2019: 170-175.
[29] 薛婷婷. 基于工业除尘PM2.5净化的滤袋特性试验研究[D]. 上海: 东华大学, 2014: 26-51.
XUE Tingting. Experimental study on the filter bag for purifying PM2.5 in the industrial dust removal[D]. Shanghai: Donghua University, 2014: 26-51.
[30] 聂雪丽, 沈恒根, 薛婷婷, 等. 织物特性对聚苯硫醚滤料动态过滤性能的影响[J]. 环境工程, 2015, 33(4):86-91.
NIE Xueli, SHEN Henggen, XUE Tingting, et al. Effect of fabric characteristics on dynamic filtration performance of polyphenylene sulfide filter material[J]. Environmental Engineering, 2015, 33(4):86-91.
[31] POPOVICI F. Filtration with high efficiency fibers in coal-fired boiler applications[J]. VGB Power Tech, 2010, 90(4): 89-92.
[32] 董余平, 秦加明, 王飞钻, 等. 聚苯硫醚(PPS)纤维发展现状与展望[J]. 中国环保产业, 2011(12): 12-16.
DONG Yuping, QIN Jiaming, WANG Feizhuan, et al. Development status and prospect of PPS fiber[J]. China Environmental Protection Industry, 2011(12): 12-16.
[33] 仲昭琳, 梁云, 胡健, 等. 三叶形PPS纤维用于湿法成形滤纸的可行性探讨[J]. 中华纸业, 2011, 32(22): 43-46.
ZHONG Zhaolin, LIANG Yun, HU Jian, et al. A study on feasibility of trilobal PPS fiber used in wet forming filter paper[J]. China Pulp & Paper Industry, 2011, 32(22): 43-46.
[34] 崔华帅. PPS/PET裂片纤维的研制[J]. 产业用纺织品, 2012, 30(8): 12-15.
CUI Huashuai. The preparation of PPS/PET split fiber[J]. Technical Textiles, 2012, 30(8): 12-15.
[35] 毕鸿章. 日本东洋纺开发的聚苯硫醚纤维简介[J]. 高科技纤维与应用, 2009, 34(4): 43-44.
BI Hongzhang. Introduction of polyphenylene sulfide fiber developed by Toyobo Textile Co., Ltd[J]. Hi-Tech Fiber and Application, 2009, 34(4): 43-44.
[36] 申霄晓. 聚苯硫醚纤维的性能综述[J]. 中国纤检, 2018(4): 140-141.
SHEN Xiaoxiao. Review of properties of polyphenylene sulfide fibers[J]. China Fiber Inspection, 2018(4): 140-141.
[37] 连丹丹, 刘伟方, 尹立新, 等. 改性聚苯硫醚纤维高温氧化行为变化机理研究[J]. 棉纺织技术, 2022, 50(2): 20-24.
LIAN Dandan, LIU Weifang, YIN Lixin, et al. study on change mechanism of high temperature oxidation behavior for modified polyphenylene sulfide fiber[J]. Cotton Textile Technology, 2022, 50(2): 20-24.
[38] 张娟. 高温滤料耐氧化、水解性能实验方法探究[D]. 上海: 东华大学, 2015: 23-24.
ZHANG Juan. Study on instrument and test method for high temperature oxidation and hydrolyzation resistance of fume filters.[D]. Shanghai: Donghua University, 2015: 23-24.
[39] 邢剑, 刘志, 阮芳涛, 等. 聚苯硫醚及其纤维的抗氧化改性研究进展[J]. 合成纤维工业, 2018, 41(4): 46-51.
XING Jian, LIY Zhi, RUAN Fangtao, et al. Research progress in oxidation resistance modification of polyphenylene sulfide resin and fibers[J]. China Synthetic Fiber Industry, 2018, 41(4): 46-51.
[40] 白媛, 马新安, 杨家密. 耐高温除尘过滤材料的研发现状及趋势[J]. 棉纺织技术, 2019, 47(10): 78-81.
BAI Yuan, MA Xinan, YANG Jiami. Development status and trend of high temperature resistance dust removing filter material[J]. Cotton Textile Technology, 2019, 47(10): 78-81.
[41] 张勇, 张蕊萍, 戴晋明, 等. 抗氧剂改性聚苯硫醚纤维抗热氧化性能的研究进展[J]. 合成纤维工业, 2014, 37(4): 46-49.
ZHANG Yong, ZHANG Ruiping, DAI Jinming, et al. Research progress of thermal oxidation resistance of polyphenylene sulfide fiber modified with antioxidants[J]. China Synthetic Fiber Industry, 2014, 37(4): 46-49.
[42] XING J, DENG B Y, LIU Q S, et al. Effect of graphene nanoplatelets on the performance of polyphenylene sulfide composites produced by melt intercalation[J]. High Performance Polymers, 2018, 30(5): 519-526.
[43] 王升, 刘鹏清, 朱墨, 等. 炭黑改性聚苯硫醚纤维性能研究[J]. 合成纤维工业, 2010, 33(3): 5-8.
WANG Sheng, LIU Pengqing, ZHU Mo, et al. Properties of carbon black modified polyphenylene sulfide fiber[J]. China Synthetic Fiber Industry, 2010, 33(3): 5-8.
[44] 祝万山, 祝成振, 赵玉萍. 抗氧聚苯硫醚(PPS)纤维的研究与开发[J]. 非织造布, 2007(6): 28-30.
ZHU Wanshan, ZHU Chengzhen, ZHAO Yuping. Research and development for anti-oxidizing polyphenylene sulfide (PPS) fiber[J]. Nonwoven Fabric, 2007(6): 28-30.
[45] LIAN D, DAI J, ZHANG R, et al. Enhancing the resistance against oxidation of polyphenylene sulfide fiber via incorporation of nano TiO2-SiO2 and its mechanistic analysis[J]. Polymer Degradation and Stability, 2016, 30(5): 519-526.
[46] 韩汶欣. 纳米SiO2复合抗氧剂/聚苯硫醚纤维的制备及性能研究[D]. 太原: 太原理工大学, 2019: 39-57.
HAN Wenxin. Preparation and properties of nano-SiO2 composite antioxidant/polyphenylene sulfide fiber[D]. Taiyuan: Taiyuan University of Technology, 2019: 39-57.
[47] 盛向前, 张蕊萍, 牛梅, 等. 耐热聚苯硫醚纤维性能的研究[J]. 产业用纺织品, 2011, 29(2): 23-26.
SHENG Xiangqian, ZHANG Ruiping, NIU Mei, et al. Preparation of heat-resistant PPS fiber and study of its properties[J]. Technical Textiles, 2011, 29(2): 23-26.
[48] BAI M, WANG J, ZHOU R, et al. Polyphenylene sulfide fabric with enhanced oxidation resistance and hydrophobicity through polybenzoxazine surface coating for emission control in harsh environment[J]. Hazardous Materials, 2022. DOI: 10.1016/j.jhazmat.2022.128735.
[49] 陈新拓, 魏成武, 代晓徽. 表面涂覆改性后聚苯硫醚纤维的耐用性能初探[J]. 高科技纤维与应用, 2013, 38(1): 57-62.
CHEN Xintuo, WEI Chengwu, DAI Xiaohui. Preliminary study on durability of surface coating modified polyphenylene sulfide (PPS) fibers[J]. Hi-Tech Fiber and Application, 2013, 38(1): 57-62.
[50] 朱杰, 纪舜卿, 张磊. 一种耐氧化性聚苯硫醚纤维: 103132178A[P]. 2013-06-05.
ZHU Jie, JI Shunqing, ZHANG Lei. An anti-oxidizing polyphenylene sulfide fiber: 103132178A[P]. 2013-06-05.
[51] 侯庆华, 杨新华, 邓佶, 等. 一种抗氧化增韧改性聚苯硫醚单丝及其制备方法: N102560734B[P]. 2012-07-11.
HOU Qinghua, YANG Xinhua, DENG Ji, et al. An antioxidant-enhanced and toughened modified polyphenylene sulfide monofilament and its preparation method: 102560734B[P]. 2012-07-11.
[52] 连丹丹. 抗氧增强聚苯硫醚(PPS)纤维的制备与性能研究[D]. 太原: 太原理工大学, 2014: 11-46.
LIAN Dandan. The preparation of antioxidant reinforced polyphenylene sulfide (PPS) fiber and the properties research[D]. Taiyuan: Taiyuan University of Technology, 2014: 11-46.
[53] FORZATTI P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A: General, 2001, 222(1/2): 221-236.
[54] JU L X, LI F, ZHOU R, et al. Manganese oxides decorated polyphenylene sulfide needle-punching fibrous felts: a new composite for dust removal and denitration application[J]. Fibers and Polymers, 2021, 22(9): 2483-2490.
[55] CHEN Y, HE H, WU S, et al. Mn/Ce oxides decorated polyphenylene sulfide needle-punching fibrous felts for dust removal and denitration application[J]. Polymers, 2020. DOI: 10.3390/polym12010168.
[56] 余娟. 基于SCR技术的聚苯硫醚针刺毡的催化剂负载工艺及性能探究[D]. 青岛: 青岛大学, 2018: 35-51.
YU Juan. Study on catalyst loading process and performance of polyphenylene sulfide needled filter felt based on SCR technology[D]. Qingdao: Qingdao University, 2018: 35-51.
[57] 刘禹豪, 何勇. 聚苯硫醚复合滤料及滤袋: 115155305A[P]. 2022-10-11.
LIU Yuhao, HE Yong. Polyphenylene sulfide composite filter material and filter bag: 115155305A[P]. 2022-10-11.
[1] LIAN Dandan, WANG Lei, YANG Yaru, YIN Lixin, GE Chao, LU Jianjun. Preparation and properties of polyphenylene sulfide composite fiber for clothing [J]. Journal of Textile Research, 2023, 44(08): 1-8.
[2] XING Jian, ZHANG Shucheng, YU Tianjiao, TANG Wenbin, WANG Liang, XU Zhenzhen, LIANG Botao. Research progress in recycling of waste polyphenylene sulfide fibers [J]. Journal of Textile Research, 2023, 44(04): 222-229.
[3] WANG Dengfeng, WANG Zongqian, FAN Xiangyu, SONG Bo, LI Yu. Study on oil absorbency of nature hollow metaplexis japonica seed hair fibers [J]. Journal of Textile Research, 2020, 41(04): 26-32.
[4] . Influence of softening treatment on properties of polyester/polyamide 6 hollow segmented-pie ultrafine fiber nonwovens [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 114-119.
[5] . Study on structure ,physical and chemical properties of fine-denier profiled fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 7-12.
[6] .  Comparison of thermal stability and combustibility obetween PI and PPS needle punched fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(12): 35-39.
[7] . Preparation of porous hollow polyacrylonitrile ultrafine fibers by coaxial electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(11): 6-10.
[8] . Structure and Properties of Poly(lactide-co-glycolide) Ultrafine Fibers Adjusted and Controlled By Multi-walled Carbon Nanotubes [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(8): 7-11.
[9] . Preparation and characterization of nylon6/TiO2 ultrafine fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(5): 6-9.
[10] LI Lijun;PU Zongyao;LI Feng;WANG Hua;LAN Bin. Thermal degradation kinetics of polyphenylene sulfide fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(12): 4-8.
[11] ZHANG Xiaofei;YU Dengguang;ZHU Sijun;SHEN Xiaxia;Chris Branford-White;ZHU Limin. Investigation of electrospun acyclovir-loaded ultrafine fiber mats [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 1-4.
[12] YANG Chongchang;FENG Jingming;HUANG Zuoying;WEI Rui;SUN Ruiyu;WANG Zhengli. Algorithm study of edge detection in profiled fibers cross-section measurement [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 11-14.
[13] ZHANG Yi-ping;XU Rui-chao;CHEN Li-na. Effect of abnormal degree of fiber cross-section on the moisture-transfer and dry-fast properties of the fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(12): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!