JOURNAL OF TEXTILE RESEARCH ›› 2017, Vol. 38 ›› Issue (09): 142-148.
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
For projectile Loom, torsion bar weft insertion mechanism, exists problems like large impact, low efficiency, high energy consumption, etc. A multi-stage electromagnetic picking principle was proposed. According to the theory of electromagnetic projection, the basic scheme of wefting insertion project/braking and the weft insertion models were established. By the theoretical model, experimental tests and simulation analysis, the conclusion that multistage electromagnetic casting efficiency is better than that of the torsion bar mechanism is obtained; for the projectile motion stability in high speed, the projectile magnetic suspension sley array system was proposed. The theoretical model of electromagnetic casting and magnetic suspension sley was established, and the velocity, acceleration and electromagnetic field coupling characteristics of projectile were analyzed. The feasibility of the electromagnetic drive was verified by the electromagnetic driving accelerated test and ANSYS finite element analysis, and "zero transmission" projectile wefting insertion mode was achieved.
Key words: electromagnetic driving projectile, weft insertion, magnetic suspension sley array, projectile loom
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.fzxb.org.cn/EN/
http://www.fzxb.org.cn/EN/Y2017/V38/I09/142
Cited