纺织学报, 2023, 44(06): 1-9 doi: 10.13475/j.fzxb.20230200602

纺织科技新见解学术沙龙专栏: 高品质芳纶生产关键技术及其产品应用

高性能纤维及其制品颜色构建的研究进展

夏良君, 曹根阳, 刘欣, 徐卫林,

武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200

Research progress in color construction of high-performance fibers and its products

XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin,

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China

通讯作者: 徐卫林(1969—),男,教授,博士。主要研究方向为纺织材料与工程。E-mail:weilin_xu@wtu.edu.cn

收稿日期: 2023-02-6   修回日期: 2023-03-21  

基金资助: 国家自然科学基金联合基金项目(U21A2095)
湖北省教育厅科研计划中青年人才项目(Q20221711)

Received: 2023-02-6   Revised: 2023-03-21  

作者简介 About authors

夏良君(1989—),男,特聘教授,博士。主要研究方向为纺织纤维材料颜色及功能化构建。

摘要

高性能纤维及其制品是我国纺织行业重点发展的关键材料,其关系到国民经济发展和国家战略安全。为促进高性能纤维及其制品的发展,掌握其染色方法前沿和发展趋势,突破行业技术瓶颈,综述了国内外高性能纤维及其制品颜色构建的研究进展。重点概述了以芳纶、碳纤维、聚酰亚胺纤维和超高分子量聚乙烯纤维为代表的高性能纤维在颜色构建方面的技术创新,从载体染色、非水介质溶剂染色和原液着色等化学染色法以及物理结构生色法等方面总结了4种高性能纤维颜色构建的基本原理和发展趋势,讨论了高性能纤维色彩构建中遇到的主要挑战,并对该领域的未来研究方向进行了展望。指出,高性能纤维及其制品的颜色构建仍需进一步完善理论研究,以期为推动其高质量发展提供理论和应用参考。

关键词: 高性能纤维; 颜色构建; 芳纶; 碳纤维; 聚酰亚胺纤维; 超高分子量聚乙烯纤维

Abstract

Significance High-performance fibers are key materials for the development of national textile industry, which is related to the development of national economic and strategic security. For the purposes of aesthetic enhancement, functional flexibility, and feature identification, demands on color construction of high-performance fiber have become an important driving force for the development of the colorful society. The development of color construction technique ranges from the chemical coloration to structural coloration technology. Additionally, future high-performance fiber will be permeable for long-term multi-field development in the applications of advanced and sophisticated areas, which is indispensable part of social progress, and integrating color construction of high-performance fiber is an ideal way to realize highly flexible and adaptive. To clearly understand the development and applications of high-performance fibers, master the frontiers and development trends of dyeing methods, and break through the technical bottlenecks of the industry, this paper comprehensively reviewed the research progress in color construction of high-performance fibers and its products.
Progress The technical innovation and research status in color construction of the representative aramid fiber, carbon fiber, polyimide fiber, and ultra-high molecular weight polyethylene was focused. According to the structural characteristics, physical, and chemical properties of high-performance fibers, the aspects of fiber raw materials, molding processing, surface modification, and dyeing process are innovated, from which to implement color construction. Based on the development of chemical coloration methods including carrier dyeing, non-aqueous media solvents dyeing, dope dyeing, and structural coloration technology, maintaining the inherent high-performance characteristics is the building blocks of color construction process. The design of coloring method matching to the materials and structure effectively improves the dyeing property and dyeing fastness of high-performance fiber. However, significant limitation of promising coloring methods, which meets the social development concept, was demonstrated in industrial application.
For the aramid fiber, based on the pre-regulation of the molecular structure, the low temperature carrier dyeing has been carried out for bright color and high color fastness. However, the removal of residual carrier, the safe reuse, and reduction of the influence on the mechanical properties should be further investigated. Due to the high crystallinity, high chemical inertness, and strong light absorption characteristics of carbon fiber, the structural color methods have been extensively used to construct colored carbon fibers, while the influence of interface properties to color fastness is an urgent problem to be solved. The golden color of the polyimide fiber will also affect the further color construction. Presently, the color construction methods of polyimide fiber mainly include carrier dyeing and surface modification dyeing. Carrier dyeing of ketone carriers is effective to the color construction, which can significantly improve the color fastness of polyimide fibers. According to the physical and chemical structural properties of ultra-high molecular weight polyethylene fiber, the modification of dyes is a preponderant method for achieving color diversity.
Conclusion and Prospect High performance fiber refers to the chemical fiber with special physical and chemical structure, performance, and special function. As typical representative of high-performance fiber, carbon fiber, aramid fiber, polyimide fiber and ultra-high molecular weight polyethylene fiber are the four most widely used in aerospace, national defense science and technology, military engineering, construction industry, transportation, medical protection, civil industry, and electronic communications. However, the unicity of color limits its application to further expansion. Aiming at the problem of color construction, the methods including carrier dyeing, non-aqueous solvent dyeing, fiber surface modification dyeing, stock solution coloring, as well as physical structure color construction have been improved.
Based on the current color construction technology, the attention of development tendency in the future will be attracted on promoting energy-saving, low-carbon, green and environmental protection dyeing, strengthening clean, and safe production. Meanwhile, theoretical fundamental research on the color construction of high-performance fibers is necessary to further investigate. Combining the macromolecular chain, chemical structure, molding process, surface physical, and chemical properties to achieve theoretical breakthrough in the color construction, theoretical innovation, and theoretical guidance for the preparation of colored high-performance fibers will be promoted.
Additionally, to improve the dyeing depth and color fastness of fibers and reduce the structural damage in the color construction process of high-performance fibers, further attention should be paid to maintain the excellent structural stability. Therefore, in the development of color construction, balance the relationship between the color construction technology and high-performance fiber properties will promote the high-quality development and application expansion of high-performance fiber and its products. This paper summarized in the main the basic principles and research progress of the above-mentioned high-performance fibers, and also pointed out the main challenge and research direction of this research direction.

Keywords: high-performance fiber; color construction; aramid fiber; carbon fiber; polyimide fiber; ultra-high molecular weight polyethylene fiber

PDF (7092KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9 doi:10.13475/j.fzxb.20230200602

XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products[J]. Journal of Textile Research, 2023, 44(06): 1-9 doi:10.13475/j.fzxb.20230200602

高性能纤维是指具有特殊的物理化学结构、性能和用途,或具有特殊功能的化学纤维。碳纤维、芳纶、聚酰亚胺纤维和超高分子量聚乙烯纤维是目前应用最为广泛的四大高性能纤维,主要应用于航空航天、国防科技、军事工程、建筑工业、交通运输、医疗防护、民用工业和电子通信等领域。然而,随着高性能纤维应用领域的拓宽,对有色高性能纤维的制备提出了挑战。由于高性能纤维的特殊分子结构和表面物理化学性能,如高分子链间作用力大、纤维结晶度高、纤维表面化学惰性强等,使染料分子难以进入纤维内部或与纤维结合,导致高性能纤维的颜色构建难度大,难以获得理想的颜色深度。为突破高性能纤维颜色构建的技术瓶颈,国内外学者进行了大量研究,针对高性能纤维的结构特点和物理化学性能,创新了高性能纤维的表面改性方法和染色工艺,从纤维原料、成形加工、表面改性等方面赋予高性能纤维颜色。

本文主要介绍了以芳纶、碳纤维、聚酰亚胺纤维和超高分子量聚乙烯纤维为代表的4种高性能纤维颜色构建的研究进展,探讨了上述高性能纤维颜色构建的发展方向,以期为制备色彩丰富的高性能纤维提供一定的参考,以满足时尚及特殊领域的需求。

1 高性能纤维颜色构建主要方法

高性能纤维及其制品是《中国制造2025》战略任务中重点领域突破发展的关键材料,也是我国纺织行业重点发展的纤维材料,其被广泛应用于各个领域,如图1所示。

图1

图1   高性能纤维的应用领域

Fig. 1   Applications of high-performance fibers


高性能纤维颜色构建的方法主要分为化学染色法和物理结构生色法。其中,化学染色法主要包括基于纤维制造中的原液着色法、针对染色工艺优化的载体染色法和非水介质溶剂染色法等。表1示出高性能纤维及其制品颜色构建的主要方法。

表1   高性能纤维颜色构建的主要方法

Tab. 1  Color construction technologies of high-performance fibers

颜色构建方法优点适用纤维
载体染色节能降耗芳纶、聚酰亚胺纤维
非水介质溶剂染色节水环保芳纶、聚酰亚胺纤维、
超高分子量聚乙烯纤维
原液着色无需后续染色超高分子量聚乙烯纤维
结构生色环保芳纶、碳纤维

新窗口打开| 下载CSV


2 芳纶颜色构建

芳纶全称为芳香族聚酰胺纤维,其工业化产品主要包括对位芳纶和间位芳纶。由于其超高强度、高模量、耐高温、耐酸碱和化学结构稳定等优良性能,被广泛应用于航空航天、军工、交通、建筑、体育和电子电器等诸多领域。彩色芳纶制品可提供美学和功能的灵活性,并达到产品识别目的。近年来,针对芳纶分子结构和染料适用性,主要采用分散染料和碱性染料进行染色,开发了载体染色、非水介质溶剂染色、接枝改性后染色等化学构建方法以及结构生色物理构建方法。其中,载体染色和非水介质溶剂染色受到广泛关注。

2.1 芳纶载体染色

载体染色是芳纶的一种重要的染色方法,在调节染浴温度下,利用载体调控纤维大分子链的动态行为,改变纤维的玻璃化转变温度,削弱分子间氢键作用力,为染料的上染提供更多空间,促进染料分子扩散到纤维内部,增加上染率。

Chen等[1]研究了载体Cindye Dnk对分散染料在芳纶上的染色速率常数和扩散系数的影响。研究结果表明,该载体能够提高分散染料对芳纶的亲和力,降低染色熵和缩短半染时间。许晓锋等[2]以 N,N-二乙基-间甲基苯甲酰胺(DEET)乳液作为载体,增大了纤维的自由体积,提高了分散染料的溶解度,促进了染料在芳纶1313和芳纶1414内部无定形区的扩散,提高了2种纤维的染色性能。虽然DEET使芳纶的玻璃化转变温度和取向度降低,但是对其结晶度没有影响。此外,郑丹等[3] 还研究了DEET 处理后芳纶1414的微观结构与性能,进一步证明了DEET仅造成了纤维分子链结构松散,未破坏其结晶区,因此染色后的芳纶1414仍具有优良的力学性能。Islam等[4]采用N-甲基甲酰苯胺作为载体,研究了碱性染料对芳纶1313的染色动力学。实验结果表明,此载体溶胀纤维性能良好,且染色后的芳纶具有良好的色牢度。Azam等[5]将苯甲醇用作芳纶1313分散染料染色的载体,充分利用苯甲醇分子尺寸小和稳定性高的特点,促进染料分子渗透到纤维内部,实现了芳纶的颜色构建。Cao等[6] 研究了低染料浓度下2-苯氧乙醇载体对芳纶1313聚集态结构与染色性能的影响。研究发现,该载体与芳纶的氢键作用强,能够扩大纤维的无定形区,显著提高染色性能,获得色彩鲜艳的芳纶。同时,该方法也破坏了纤维的结晶区,降低了纤维的热稳定性。在该研究基础上,基于节能减排和减少染色过程对纤维的损伤原则,Sheng等[7] 开发了2-苯氧乙醇载体预溶胀芳纶1313的方法,实现了芳纶的低温(95 ℃) 染色。该方法充分利用载体与染液形成的双相体系,促进阳离子染料向载体相聚集,显著提高了芳纶的染色性能。由此可见,研究人员在芳纶的载体染色方面已经开展了大量的研究工作,特别是通过对纤维分子结构的预调控处理,实现了芳纶的低温染色。采用载体染色所制备的纤维具有色彩鲜艳和色牢度高的优点,但此方法中去除纤维内部残余载体、安全回用载体和进一步减少载体对纤维力学性能的影响有待进一步研究。

2.2 芳纶非水介质溶剂染色

合适的非水溶剂能够调控分散染料聚集体形貌结构和纤维聚集态结构,溶胀纤维并促进染料分子进入纤维内部,提高纤维的染色性能。

Preston等[8]采用水溶性吡啶溶剂对芳纶1313进行染色,染色后的纤维具有明亮的颜色和良好的光稳定性,同时保持良好的力学性能和优异的耐光性。基于染料分子在溶剂中的聚集形态调控,Sheng等[9] 利用N,N-二甲基乙酰胺(DMAc)/水溶剂体系对芳纶进行染色,系统地研究了染料在二元体系中的聚集行为及其上染动力学。研究结果表明,DMAc通过调控染料聚集体的Zeta电位和粒径提高了染色性能。在此基础上,Sheng等[10] 提出了一种基于阳离子的染色机制。DMAc除作为氢键调节剂外,还可与氯化钠协同选择性地破坏芳纶大分子的分子间氢键。在染色过程中,染料分子与DMAc形成阳离子[DMAc-Dye]+,显著提高了芳纶1313的染色性能,且染色后的纤维具有良好的力学性能和热学性能。基于清洁、绿色、环保的制造理念,Zheng等[11]采用超临界二氧化碳作为溶剂代替水,研究了芳纶在超临界二氧化碳中的染色特性,实现了多种分散染料对芳纶的颜色构建,该方法具有色牢度高、工艺流程短和节能环保等优点,但对染色装备的要求较高。离子液体作为新兴的非水介质,同样受到广泛关注。Opwis等[12] 利用1-乙基-3-甲基咪唑乙基硫酸盐离子液体刻蚀芳纶表面以提高其粗糙度,增加了离子型染料的吸附位点,在室温下构建了高色牢度的芳纶1313。上述研究工作表明,非水介质溶剂染色具有节水和染色牢度高的优势,可高效再利用非水介质,在绿色环保染色领域具有独特的优势。

2.3 其它染色方法

利用表面改性的方法调控芳纶的表面结构,同样有助于提高染色性能。主要包括聚丙烯酸接枝法[13]、光引发接枝法[14]、化学接枝法[15]、Friedel-Crafts 烷基化反应法[16]、超声波法[17]、低温等离子体法[18]、臭氧处理法[19]、微波辐照法[20]等。上述表面方法通过在纤维表面引入丰富的极性基团和粗糙界面来增加对染料的吸附,提高染色性能。同时,物理结构生色法也被应用于芳纶颜色的构建。Hasan等[21] 通过原位合成纳米银(Ag NPs)对芳纶织物进行结构生色,通过调控Ag NPs的形貌和粒径改变织物颜色,可形成最大吸收峰值位于543、445和599 nm的红、黄和蓝三原色。Shi等[22] 在芳纶织物上引入多巴胺优化了无机纳米粒子与芳纶的界面作用力,采用高折射率硫化锌在芳纶表面构建周期性纳米结构,制备了颜色鲜艳的芳纶,主要颜色有蓝色、绿色和红色。这种物理结构生色法是一种环境友好型的颜色构建方法,在构建颜色过程中,不仅能够保持纤维原本优良的力学性能,同时还能够赋予纤维功能特性,纤维的颜色主要依赖于光子晶体或纳米粒子的结构及排列,这也为其大规模产业化应用提出了挑战。

3 碳纤维颜色构建

碳纤维由于其优异的力学性能、耐腐蚀和耐摩擦性能、良好的热稳定性和高导电性,被广泛应用于航空航天、电子、军工、汽车、能源和体育等众多领域。然而,碳纤维的黑色外观无法满足日益增长的色彩的需求。碳纤维的高结晶度、高化学惰性和强烈光吸收特性,较难用传统的染料或色素分子着色,颜色构建难度极大。

目前,碳纤维颜色的构建主要采用物理结构生色法。主要实现方法有原子层沉积法[23]、电泳沉积法[24]、磁控溅射法[25]、原位聚合接枝改性法[26]、水热法[27]和自组装沉降法[28]等,如表2所示。

表2   碳纤维的物理结构色构建方法

Tab. 2  Structural color construction technologies of carbon fibers

原料处理方法结构生色方法反应步骤数量结构控制条件颜色种类参考文献
Al2O3/TiO2磁控溅射3薄膜结构周期性厚度4[25]
TiO2原子层沉积2薄膜结构薄膜厚度4[23]
Poly(St-MMA-AA)乳液聚合自组装沉降3光子晶体粒子粒径5[28]
Al(CH3)3/Zn(CH2CH3)2水解反应原子层沉积3薄膜结构薄膜厚度5[29]
PS电泳沉积2光子晶体粒子粒径3[30]
PAAc电致乳液聚合原位聚合接枝改性3薄膜结构结构变化4[26]
FeCl3氟化铵/水水热反应1均匀纳米粒子粒子粒径3[27]
PMMA自由基聚合电泳沉积2光子晶体微球粒径3[24]
PNIPAM-co-AAc乳液聚合电泳沉积3光子晶体水凝胶微球粒径3[31]

注:Poly(St-MMA-AA)为苯乙烯-甲基丙烯酸甲酯-丙烯酸共聚物;PS为聚苯乙烯;PAAc为聚丙烯酸;PMMA为聚甲基丙烯酸甲酯;PNIPAM-co-AAc为聚N-异丙基丙烯酰胺-共聚-丙烯酸。

新窗口打开| 下载CSV


Chen等[23]首次采用原子层沉积(ALD)技术在碳纤维表面沉积了厚度可控的TiO2层,制备了红色、黄色、蓝色和绿色4种颜色的碳纤维,为碳纤维颜色构建开辟了新途径。Liu等[24] 通过电泳沉积法制备了结构色可控的彩色碳纤维。在环形电场作用下,负电荷的聚甲基丙烯酸甲酯微球在导电碳纤维表面组装,形成鲜艳的蓝色、黄绿色和红色结构色。Zhao等[25] 采用磁控溅射法在碳纤维上引入具有周期性梯度的Al2O3 和TiO2交替的一维光子晶体薄膜结构。通过引入具有周期性梯度的一维光子层,形成了一系列具有结构颜色梯度和良好力学性能的新型光子双面彩色碳纤维。由于其独特的光子结构周期性,碳纤维在全光谱中表现出连续颜色梯度,显示了蓝色、绿色、橙色和紫红等系列颜色。Eyckens等[26] 基于原位聚合过程的表面改性技术,将丙烯酸聚合物薄膜快速接枝到碳纤维表面,基于薄膜干涉使碳纤维呈现蓝色。Lin等[27] 采用一步水热法在碳纤维表面原位生长FeOOH,通过调控水热反应的温度来改变FeOOH的粒径,制备出了蓝色、绿色和黄色的碳纤维。该方法制备的彩色碳纤维具有优异的结构稳定性,如耐酸性和碱性条件下的重复洗涤、光照和等离子体蚀刻。Yu等[28] 通过热辅助重力沉降法促进poly(St-MMA-AA)在碳纤维表面自组装生成光子晶体。根据布拉格定律和斯涅尔定律,计算合成的poly(St-MMA-AA)纳米颗粒的尺寸,成功预测了碳纤维在可见光谱中的结构色。上述碳纤维颜色构建的共性都是从原子或者分子反应出发,在碳纤维表面组装成特定的结构,从而实现颜色的构建。

4 聚酰亚胺纤维颜色构建

聚酰亚胺纤维具有环状和刚性的分子链,使其具有优异的耐热性、高强高模、阻燃性、抗辐射性等高性能属性,因此,被广泛用于航空航天、高温过滤、电气绝缘、防火防热防护服等领域。然而,聚酰亚胺纤维分子链上用于染色的官能团较少,且其较高的玻璃化转变温度限制了分子链的运动,这对其颜色的构建提出了巨大挑战。此外,聚酰亚胺纤维本身的金黄色也会影响后续染色加工的颜色。目前,聚酰亚胺纤维的颜色构建方法主要包括载体染色法和表面改性染色方法。

4.1 聚酰亚胺纤维载体染色

聚酰亚胺纤维的载体染色法具有良好的产业化前景,利用小分子化合物作为载体,提高染料和纤维的亲和力,改善纤维的染色性能。表3示出聚酰亚胺纤维的载体染色方法对比。伍双燕等[32] 利用相似相溶原理,依据聚酰亚胺溶解度参数设计了相似的载体,在体积比为2∶5的N,N-二甲基甲酰胺与甲基异丁基甲醇的溶剂体系中,获得了良好的染色效果。邵冬燕等[33] 根据聚酰亚胺的分子结构制备了醚醇类染色载体,该载体能显著改善聚酰亚胺的染色性能,且染色牢度高。肖超鹏等[34] 研究了芳基醇类、芳基酮类、避蚊胺载体对聚酰亚胺纤维染色性能的影响。结果表明,芳基酮类载体对聚酰亚胺纤维的亲和力强,可迅速进入纤维内部,减弱纤维内分子链间的作用力,提高染料在纤维内部的扩散速率,其染色效果最好。

表3   聚酰亚胺纤维的载体染色方法

Tab. 3  Carrier dyeing technologies of polyimide fibers

载体种类染料种类染料用量/
%(o.w.f)
pH值温度/℃时间/minK/S参考文献
芳基酮类阳离子黑FDL63~41306032.0[34]
N,N-二甲基甲酰胺/甲基异丁基甲醇分散红AO-E45~7130606.5[32]
N,N-二甲基甲酰胺/甲基异丁基甲醇分散黄EGL1017.7[32]
N,N-二甲基甲酰胺/甲基异丁基甲醇分散蓝2BLN67.5[32]
苯乙酮分散红15351306025.0[35]
苯乙酮分散蓝6025.0[35]
苯乙酮碱性红4617.5[35]
苯乙酮碱性蓝4123.0[35]
N-甲基甲酰苯胺分散红167:151306020.0[36]
N-甲基甲酰苯胺阳离子蓝SD-GSL551306024.0[33]

新窗口打开| 下载CSV


Shao等[35] 采用N-甲基甲酰苯胺、苯氧异丙醇和苯乙酮作为载体提高了聚酰亚胺纤维的染色性能,还进一步分析了N-甲基氨基苯胺对聚酰亚胺纤维结构与性能的影响。研究表明,N-甲基甲酰苯胺通过氢键、π-π键等相互作用渗透到聚酰亚胺纤维中,其产生溶胀效应,提高了纤维的染色性能[36]。综上可知,载体染色法有利于聚酰亚胺纤维颜色的构建,特别是酮类载体,能够显著提高染色效果。

4.2 聚酰亚胺纤维表面改性染色

聚酰亚胺纤维在碱性条件下易水解,利用碱剂预处理纤维,能够增加聚酰亚胺分子链段上的极性基团以提高其染色性能。Stephans等[37] 研究了聚酰亚胺在碱性溶液中转化为聚酰胺酸的过程,发现其转化程度随时间、温度和氢氧根离子浓度的变化而变化,碱处理能够提高聚酰亚胺的染色性能。Wang等[38] 采用氢氧化钾溶液对聚酰亚胺纤维进行预处理,不仅能够提高纤维表面的粗糙度和比表面积,而且产生的功能性官能团促进了纤维表面染料的吸附,从而有效提高了纤维的染色性能和染色牢度。

5 超高分子量聚乙烯纤维颜色构建

超高分子量聚乙烯纤维因其优良的耐化学腐蚀性、耐磨性、耐冲击性、防弹防切割、高强和高模等性能,被广泛应用于军工、航天、生物医用材料和防护装备等方面,但超高分子量聚乙烯纤维结晶度高、取向度高、分子链中不含极性基团、表面化学惰性强,致使染料难以进入纤维内部。目前,超高分子量聚乙烯纤维的染色方法主要包括改性染料染色、原液着色、表面改性染色等。表4对比了不同染色方法上染超高分子量聚乙烯纤维的工艺参数和K/S值。

表4   超高分子量聚乙烯纤维的染色方法

Tab. 4  Coloration technologies of ultra-high molecular weight polyethylene fibers

方法染料(颜料)种类染料用量/
%(o.w.f)
pH值温度/
时间/
min
K/S
参考
文献
改性疏水染料1-对甲苯氨基-4-蒽醌己基醚55130601.46[40]
改性疏水染料1-对甲苯氨基-4-蒽醌癸基醚1.79[40]
改性疏水染料1-对甲苯氨基-4-蒽醌十四烷基醚2.10[40]
常规疏水染料乙基黄51256011.6[39]
常规疏水染料油红O13.7[39]
多巴胺改性活性红2135656.144[41]
改性偶氮染料丁基取代单偶氮黄51306017.6[42]
原液着色改性Fe2O35230~29015.5[43]
超临界二氧化碳N-(2-Cl-4-甲基苯基)-2-氧亚基-2-
(对甲苯基)乙酰肼基氰化物
612033.5[44]
辐射诱导接枝碱性红460.024904016.5[45]

新窗口打开| 下载CSV


5.1 超高分子量聚乙烯纤维改性染料染色

王晓春等[39] 系统探究了疏水染料结构中疏水基团数量、链长以及强极性基团对超高分子量聚乙烯染色性能的影响。结果表明:染料的疏水性和溶解度参数是影响超高分子量聚乙烯纤维染色性能的重要因素;染料溶解度参数与超高分子量聚乙烯纤维越接近,越有利于提高染料和纤维之间的分配系数和亲和力。依据此原理,王菊等[40] 合成了1-对甲苯氨基-4-蒽醌己基醚、1-对甲苯氨基-4-蒽醌癸基醚和1-对甲苯氨基-4-蒽醌十四烷基醚3种具有高疏水性的紫色改性染料。其中,改性1-对甲苯氨基-4-蒽醌十四烷基醚染料的溶解度参数为8.93 (J/cm3) 1/2, 与超高分子量聚乙烯溶解度参数8.00 (J/cm3) 1/2相接近,染色效果最佳。Kim等[46] 研究了不同烷基取代基蒽醌蓝染料对超高分子量聚乙烯纤维染色性能的影响。发现随着烷基取代基长度增加,超高分子量聚乙烯纤维的染色性能有逐渐提高的趋势。采用单偶氮基团上烷基取代基长度不同的偶氮黄色和红色染料对超高分子量聚乙烯纤维进行染色,随着烷基取代基长度增加到一定长度时,其对超高分子量聚乙烯纤维的染色性能变差[42]。在此基础上,根据烷基取代基长度与染色性能的关系,Kim等[47]还以1-氨基-2-溴-4-羟基蒽醌和烷基酚为原料合成了系列不同分子质量的蒽醌红染料,对超高分子量聚乙烯纤维进行染色,获得了高耐光、高色牢度的红色纤维。综上,染料的极性影响染料与纤维之间的亲和力。根据纤维的性质对染料进行改性,是有效解决纤维染色困难的方法。目前,通过增加染料疏水基团数量或疏水链长度来改变染料的疏水性,有利于提高染料与超高分子量聚乙烯纤维间的亲和力,进一步改善纤维的染色性能。

5.2 超高分子量聚乙烯纤维原液着色

在彩色熔纺超高分子量聚乙烯纤维的制备过程中,纺丝温度较高,因此,要求着色剂具有耐高温性(300 ℃以上)。无机颜料具有化学稳定性好、耐热性好、价格经济等优点,是原液着色常用的优良着色剂。可通过对颜料颗粒表面改性改善其在聚合物中的分散性,解决无机颜料的聚集对超高分子量聚乙烯可纺性、力学性能和染色性能的影响。刘铭等[48] 采用硅烷偶联剂改性铁黄无机颜料,提高了颜料与超高分子量聚乙烯的相容性,实现了有色熔纺超高分子量聚乙烯纤维的制备。Wang等[43] 采用钛酸盐偶联剂改性Fe2O3颜料,用于熔纺彩色超高分子量聚乙烯纤维的制备。研究发现:在一定范围内随着颜料含量的增加,纤维K/S值增加,且耐干湿摩擦色牢度评级分别达到5和4~5级;但颜料含量的增加会影响纤维大分子链的连续性,使着色纤维的力学性能下降。

5.3 超高分子量聚乙烯纤维非水介质溶剂染色

基于超临界二氧化碳在染色过程中不会破坏有机化合物结构的特性,Ma等[44] 实现了以超临界二氧化碳为介质对超高分子量聚乙烯织物的染色。在超临界二氧化碳环境下,以20 MPa压力和120 ℃温度对超高分子量聚乙烯织物进行染色,随着染色时间和染料用量的增加,超高分子量聚乙烯织物的染色性能随之提高;染色后织物的耐摩擦和耐升华色牢度达到4~5级。

5.4 超高分子量聚乙烯纤维表面改性染色

贾冬等[41] 通过在超高分子量聚乙烯纤维表面沉积聚多巴胺引入亲水基团和苯环结构,增强了染料分子与纤维的结合力。经过表面改性后超高分子量聚乙烯纤维的染色性能明显提高,经活性红2染色后,其 K/S 值达到6.144。Enomoto等[45] 以甲基丙烯酸甲酯、丙烯酸和苯乙烯为单体,对超高分子量聚乙烯纤维进行了辐射诱导接枝改性,提高其染色亲和性。研究结果表明,在一定范围内,接枝率越高,纤维颜色越深,经阳离子染料染色后,其K/S值可达16.5,色度较深。

目前,在超高分子量聚乙烯纤维颜色的构建过程中,使纤维的力学性能保持稳定具有非常重要的意义。

6 结束语

以芳纶、碳纤维、聚酰亚胺纤维和超高分子量聚乙烯纤维为代表的高性能纤维,因其优异的性质广泛应用于国防科技、军事工程、航空航天、交通运输、建筑工业、医疗防护等重要领域,但是产品颜色的单一性限制了其应用的进一步拓展。针对高性能纤维难染色或难染深的问题,其颜色构建方法主要包括载体染色、非水介质溶剂染色、纤维表面改性染色、原液着色等化学染色法以及物理结构生色法。基于目前高性能纤维颜色构建技术现状,推进节能低碳绿色环保染色,加强清洁安全生产,助力纺织行业高质量发展将成为未来主要发展趋势。同时,需进一步加强高性能纤维颜色构建的理论基础研究,结合高性能纤维的大分子链、化学结构、成形方式、表面物理和化学性能,在高性能纤维的颜色构建中取得理论突破,为制备彩色高性能纤维提供原理创新和理论指导。此外,提高纤维的染色深度和色牢度,降低高性能纤维颜色构建过程的结构损伤,保持纤维的高力学性能也是亟需解决的问题。在研究中平衡好高性能纤维的颜色构建技术与纤维性能之间的关系,将促进高性能纤维及其制品的高质量发展和应用拓展。

参考文献

CHEN X, LIU B, SHENG D, et al.

Effect of 2-phenoxyethanol pre-treatment on structure and adhesion properties of thermotropic liquid crystal polyarylate fibers

[J]. Textile Research Journal, 2021, 91(13/14): 1546-1554.

DOI:10.1177/0040517520985888      URL     [本文引用: 1]

This study investigated the surface modification of thermotropic liquid crystal polyarylate (TLCP) fibers by 2-phenoxyethanol pre-treatment, specifically, whether it enhanced their interfacial adhesive properties. The surface chemical compositions and microstructures of both control and 2-phenoxyethanol pre-treated TLCP fibers were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. Furthermore, thermal, dyeing, and adhesion properties of both control and 2-phenoxyethanol pre-treated fibers were compared by thermogravimetric analysis, colorimetry, and universal material testing system, respectively. The results indicated that 2-phenoxyethanol pre-treatment increased the surface-anchored oxygen atom amount: the oxygen to carbon atomic ratio at the surface of the TLCP fibers increased from 0.17 to 0.22. However, 2-phenoxyethanol pre-treatment showed almost no effect on the thermal stability and mechanical properties of the TLCP fibers. The peeling strength of the 2-phenoxyethanol pre-treated TLCP fabric was around twice that of the control TLCP fabric.

许晓锋, 郑庆康, 郑进渠, .

芳纶纤维的DEET载体染色

[J]. 印染, 2014, 40(4): 1-6.

[本文引用: 1]

XU Xiaofeng, ZHENG Qingkang, ZHENG Jinqu, et al.

Dyeing of aramid fibers with carrier DEET

[J]. China Dyeing & Finishing, 2014, 40(4): 1-6.

[本文引用: 1]

郑丹, 范小敏, 许晓锋, .

避蚊胺对对位芳纶的结构及染色性能的影响

[J]. 合成纤维工业, 2015, 38(1): 20-23.

[本文引用: 1]

ZHENG Dan, FAN Xiaomin, XU Xiaofeng, et al.

Effect of DEET on structure and dyeing property of para-aramid fiber

[J]. China Synthetic Fiber Industry, 2015, 38(1): 20-23.

[本文引用: 1]

ISLAM M T, AIMONE F, FERRI A, et al.

Use of N-methylformanilide as swelling agent for meta-aramid fibers dyeing: kinetics and equilibrium adsorption of Basic Blue 41

[J]. Dyes and Pigments, 2015, 113: 554-561.

DOI:10.1016/j.dyepig.2014.08.029      URL     [本文引用: 1]

AZAM F, IQBAL K, SAFDAR F.

Optimization of high performance m-aramid fiber with disperse dye containing high color strength

[J]. Color Research & Application, 2019, 44(2): 249-256.

[本文引用: 1]

CAO G, SHENG D, XU W, et al.

Structural and dyeing properties of aramid treated with 2-phenoxyethanol

[J]. Coloration Technology, 2015, 131(5): 384-388.

DOI:10.1111/cote.2015.131.issue-5      URL     [本文引用: 1]

SHENG D, WANG Y, WANG X, et al.

Low-temperature dyeing of meta-aramid fabrics pretreated with 2-phenoxyethanol

[J]. Coloration Technology, 2017, 133(4): 320-324.

DOI:10.1111/cote.2017.133.issue-4      URL     [本文引用: 1]

PRESTON J, HOFFERBERT W L.

A solvent-dyeing process for aramid fibers

[J]. Textile Research Journal, 2016, 49(5): 283-287.

DOI:10.1177/004051757904900506      URL     [本文引用: 1]

A solvent-dyeing process for aramid fibers is described which is capable of producing fiber and fabrics having excellent depth of shades. The brightness of the fibers and fabrics is quite high when the undyed fibers are bright. When properly selected basic dyes are used, and when heavy shades are developed on the fabrics, good dyed lightfastness values are ob tained. Carpet samples of Nomex® dyed via the solvent-dyeing process described are considerably brighter, cleaner, and deeper in shades than commercial carpet samples of Nomex dyed using the producer-recommended dyeing process. More over, the dyed lightfastness values (Gray Scale) are considerably higher for these solvent-dyed carpet samples. Thus. ratings as poor as 2 and 1 after, respectively, 20 and 40 hours in the Fade-Ometer were obtained on the commercial carpet samples, whereas certain of the test samples rated 2—3 even after 320 hours.

SHENG D, DENG B, WANG Y, et al.

Isotherms and kinetics of dyeing poly-m-phenyleneisophthal-amide with Basic Red 46 based on the macro-cation dyeing mechanism

[J]. Textile Research Journal, 2020, 91(3/4): 297-305.

DOI:10.1177/0040517520934050      URL     [本文引用: 1]

The aggregation behaviors of Basic Red 46 in water, water/dimethylacetamide (water/DMAc), and water/DMAc/NaCl were investigated by both a Transmission Electron Microscope and a laser particle size analyzer. The corresponding electric conductivity of the dyeing solution and surface zeta potential of dye aggregates using different concentrations of DMAc and NaCl were compared. The kinetics and adsorption isotherms of dyeing poly- m-phenyleneisophthalamide (MPIA) based on the macro-cation dyeing mechanism were investigated. The Langmuir and Freundlich models were used to determine the adsorption type. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were applied to determine the kinetics of [DMAc-Dye]+ adsorption onto MPIA. The washing and rubbing fastness of dyed MPIA using different initial dye concentrations and dyeing time were measured and analyzed.

SHENG D, DENG B, CAO G, et al.

Improved dyeing of poly-m-phenyleneisophthalamide using cationic dye based on macro-cation dyeing mechanism

[J]. Dyes and Pigments, 2019, 163 :111-117.

DOI:10.1016/j.dyepig.2018.11.053      URL     [本文引用: 1]

ZHENG H, ZHENG L.

Dyeing of meta-aramid fibers with disperse dyes in supercritical carbon dioxide

[J]. Fibers and Polymers, 2014, 15(8): 1627-1634.

DOI:10.1007/s12221-014-1627-4      URL     [本文引用: 1]

OPWIS K, CELIK B, BENKEN R, et al.

Dyeing of m-aramid fibers in ionic liquids

[J]. Polymers (Basel), 2020, 12(8) :1824-1836.

DOI:10.3390/polym12081824      URL     [本文引用: 1]

Aramids represent a class of high-performance fibers with outstanding properties and manifold technical applications, e.g., in flame-retardant protective clothing for firefighters and soldiers. However, the dyeing of aramid fibers is accompanied by several economic and ecological disadvantages, resulting in a high consumption of water, energy and chemicals. In this study, a new and innovative dyeing procedure for m-aramid fibers using ionic liquids (ILs) is presented. The most relevant parameters of IL-dyed fibers, such as tensile strength, elongation and fastness towards washing, rubbing and light, were determined systematically. In summary, all aramid textiles dyed in ILs show similar or even better results than the conventionally dyed samples. In conclusion, we have successfully paved the way for a new, eco-friendly and more sustainable dyeing process for aramids in the near future.

VU N, MICHIELSEN S.

Near room temperature dyeing of m-aramid fabrics

[J]. Journal of Applied Polymer Science, 2019. DOI: 10.1002/APP.48190.

[本文引用: 1]

KIM E M, MIN B G, JANG J.

Reactive dyeing of meta-aramid fabrics photografted with dimethylaminopropyl methacrylamide

[J]. Fibers and Polymers, 2011, 12(5): 580-586.

DOI:10.1007/s12221-011-0580-8      URL     [本文引用: 1]

SA R, YAN Y, WEI Z,

Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting

[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21730-21738.

[本文引用: 1]

管宇, 冒亚红.

八聚乙烯基倍半硅氧烷改性分散染料对芳纶纤维抗紫外染色

[J]. 纺织科学与工程学报, 2017, 34(1): 13-20.

[本文引用: 1]

GUAN Yu, MAO Yahong.

Eight-polyethylene basin semi-siliconane modified decentralized dye dyes for dyeing of aramid fiber

[J]. Journal of Textile Science and Engineering, 2017, 34(1): 13-20.

[本文引用: 1]

吴国辉.

超声波处理对服用对位芳纶纤维染色性能的影响

[J]. 印染助剂, 2017, 34(4): 38-40.

[本文引用: 1]

WU Guohui.

Influence of ultrasonic treatment on the dyeing properties of para-aramid fiber

[J]. Textile Auxiliaries, 2017, 34(4): 38-40.

[本文引用: 1]

张颖.

低温等离子体处理对芳纶染色性能的探讨

[J]. 染整技术, 2010, 32(12): 1-7.

[本文引用: 1]

ZHANG Ying.

Study on the performance of aramid chromatin in low temperature plasma

[J]. Textile Dyeing and Finishing Journal, 2010, 32(12): 1-7.

[本文引用: 1]

郭亚飞, 梁高勇, 王美慧, .

臭氧等离子体预处理对芳纶染色性能的影响

[J]. 纺织学报, 2022, 43(10): 83-88.

[本文引用: 1]

GUO Yafei, LIANG Gaoyong, WANG Meihui, et al.

Effect of ozone plasma pretreatment on dyeing properties of aramid fibers

[J]. Journal of Textile Research, 2022, 43(10): 83-88.

DOI:10.1177/004051757304300204      URL     [本文引用: 1]

An indirect back-titration method for the determination of (Ca + Mg) in flameproofed cotton fabrics is developed. Fabrics are boiled for 10-15 min with an excess of sodium-EDTA solution to extract and to bind the ('a and Mg, present in fabrics, into their corresponding EDTA complexes. The sodium-EDTA excess is titrated potentiometrically at pH 9.8 with CaCl2 solution, using a divalent-cation specific electrode or visually with Eriochrome Black T indicator. (Ca + Mg) in the range of 0.2 3% as Ca in fabrics are determined with an average error of 3 4% and a standard deviation of 0.2 0.3%

AMESIMEKU J, FAN L, JAKPA W, et al.

Dyeing properties of meta-aramid fabric dyed with basic dye using ultrasonic-microwave irradiation

[J]. Journal of Cleaner Production, 2021. DOI :10.1016/j.jclepro.2020.124844.

[本文引用: 1]

HASAN K, WANG H, MAHMUD S, et al.

Coloration of aramid fabric via in-situ biosynthesis of silver nanoparticles with enhanced antibacterial effect

[J]. Inorganic Chemistry Communications, 2020. DOI : 10.1016/j.inoche.2020.108115.

[本文引用: 1]

SHI Q, LI X, FU Y, et al.

Structurally colored aramid fabric construction and its application as a recyclable photonic catalyst

[J]. Soft Matter, 2023. DOI: 10.1039/D2SM01373H.

[本文引用: 1]

CHEN F, YANG H, LI K, et al.

Facile and effective coloration of dye-inert carbon fiber fabrics with tunable colors and excellent laundering durability

[J]. ACS Nano, 2017, 11(10): 10330-10336.

DOI:10.1021/acsnano.7b05139      PMID:28933813      [本文引用: 3]

Carbon fiber is a good candidate in various applications, including in the military, structural, sports equipment, energy storage, and infrastructure. Coloring of carbon fiber has been a big challenge for decades due to their high degrees of crystallization and insufficient chemical affinity to dyes. Here, multicolored carbon fiber fabrics are fabricated using a feasible and effective atomic layer deposition (ALD) technique. The vibrant and uniform structural colors originating from thin-film interference is simply regulated by controlling the thickness of conformal TiO coatings on the surface of black carbon fibers. Impressively, the colorful coatings show excellent laundering durability, which can endure 50 cycles of domestic launderings. Moreover, the mechanical properties only drop off slightly after coloring. Overall, these results open an alternative avenue for development of TiO nanostructured films with multifunctional features grown using ALD technologies. This technology is speculated to have potential applications in various fields such as color engineering and radiation-proof fabrics and will further guide material design for future innovations in functional optical and color-display devices. More importantly, this research demonstrates a route for the coloring of black carbon fiber-based materials with vibrant colors.

LIU Z, ZHANG Q, WANG H, et al.

Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method

[J]. Nanoscale, 2013, 5(15): 6917-6922.

DOI:10.1039/c3nr01766d      PMID:23783532      [本文引用: 3]

Structurally colored fiber was fabricated by an electrophoretic deposition method under a circinate electric field. These fibers exhibit structural color, based on the external field-assembly of charged PMMA microspheres on the surface of the electroconductive carbon fiber, with reflectance spectra stretch-tunable in the 430-608 nm, which are determined by the lattice constants of the photonic crystals. Also, the influence of applied voltage, deposition time and electroconductivity on the number of deposited layers and efficiency were studied. In addition, we further developed a horizontal and continuous process to fabricate a long range structurally colored fiber. And the method is a drastic acceleration in comparison with the gravity sedimentation technique that needs weeks or even months, and it would be fast and facile for the further study of structural color on the surface of the fiber. The process may be used to simulate the conventional fiber coloration process. Such elastically tuned structurally colored fibers are of interest for many applications.

ZHAO K, CHENG J, SUN N, et al.

Photonic janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices

[J]. Advanced Materials Technologies, 2021. DOI:10.1002/admt.202101057.

[本文引用: 3]

EYCKENS D J, ARNOLD C L, RANDALL J D, et al.

Fiber with butterfly wings: creating colored carbon fibers with increased strength, adhesion, and reversible malleability

[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41617-41625.

[本文引用: 3]

LIN Z, JIA X, YANG J, et al.

High structural stability of colored carbon fiber cloths modified by FeOOH

[J]. Applied Surface Science, 2021. DOI:10.1016/j.apsusc.2021.148994.

[本文引用: 3]

YU J, LEE C H, KAN C W, et al.

Fabrication of structural-coloured carbon fabrics by thermal assisted gravity sedimentation method

[J]. Nanomate-rials (Basel), 2020, 10(6) :1133-1149.

[本文引用: 3]

NIU W, ZHANG L, WANG Y, et al.

Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management

[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32261-32268.

[本文引用: 1]

ZHOU N, ZHANG A, SHI L, et al.

Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical properties

[J]. ACS Macro Letters, 2013, 2(2): 116-120.

DOI:10.1021/mz300517n      URL     [本文引用: 1]

YUAN X, LIU Z, SHANG S, et al.

Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method

[J]. RSC Advances, 2016, 6(20): 16319-16322.

DOI:10.1039/C5RA09917J      URL     [本文引用: 1]

伍双燕, 王树根.

溶解度参数在聚酰亚胺染色中的应用

[J]. 印染, 2016, 42(19): 1-5.

[本文引用: 4]

WU Shuangyan, WANG Shugen.

The application of solubility parameters to polyimide dyeing

[J]. China Dyeing & Finishing, 2016, 42(19): 1-5.

[本文引用: 4]

邵冬燕, 林怡漫, 杜金梅, .

聚酰亚胺阳离子染料载体染色性能

[J]. 高分子材料科学与工程, 2019, 35(4): 52-56.

[本文引用: 2]

SHAO Dongyan, LIN Yiman, DU Jinmei, et al.

Dyeing properties of polyimide with basic dye and carrier

[J]. Polymer Materials Science and Engineering, 2019, 35(4): 52-56.

[本文引用: 2]

肖超鹏, 陆少锋, 申天伟, .

聚酰亚胺纤维的载体染色

[J]. 印染, 2019, 45(4): 21-23.

[本文引用: 2]

XIAO Chaopeng, LU Shaofeng, SHEN Tianwei, et al.

Carrier dyeing of polyimide fiber

[J]. China Dyeing & Finishing, 2019, 45(4): 21-23.

[本文引用: 2]

SHAO D, XU C, WANG H, et al.

Enhancing the dyeability of polyimide fibers with the assistance of swelling agents

[J]. Materials (Basel), 2019. DOI:10.3390/ma12030347.

[本文引用: 5]

SHAO D, DU J, XU C, et al.

Interaction of N-methylformanilide with high-performance polyimide fibre and its effect on dyeing

[J]. Coloration Technology, 2022, 138: 407-416.

DOI:10.1111/cote.v138.4      URL     [本文引用: 2]

STEPHANS LE, MYLES A, THOMAS RR.

Kinetics of alkaline hydrolysis of a polyimide surface

[J]. Langmuir, 2000, 16: 4706-4710.

DOI:10.1021/la991105m      URL     [本文引用: 1]

WANG Z, RAO Z, ZHAN Y, et al.

Improving the dyeability of polyimide by pretreatment with alkali

[J]. Coloration Technology, 2015, 132: 1-7.

DOI:10.1111/cote.2016.132.issue-1      URL     [本文引用: 1]

王晓春, 张健飞, 张丽平, .

高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响

[J]. 纺织学报, 2020, 41(3): 78-83.

[本文引用: 3]

WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, et al.

Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers

[J]. Journal of Textile Research, 2020, 41(3): 78-83.

[本文引用: 3]

王菊, 张丽平, 王晓春, .

高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能

[J]. 纺织学报, 2022, 43(3): 97-101.

[本文引用: 4]

WANG Ju, ZHANG Liping, WANG Xiaochun, et al.

Preparation of highly hydrophobic dyes and their dyeing of ultra-high molecular weight polyethylene fabric

[J]. Journal of Textile Research, 2022, 43(3): 97-101.

[本文引用: 4]

贾冬, 艾沙江·司马义, 范伟思, .

基于多巴胺改性的UHMWPE纱线高效染色技术

[J]. 中国纤检, 2018(10): 137-140.

[本文引用: 2]

JIA Dong, AISHAJIANG Simayi, FAN Weisi, et al.

High efficient dyeing process for UHMWPE yarns via dopamine modification

[J]. China Fiber Inspection, 2018(10): 137-140.

[本文引用: 2]

KIM T, JEON S.

Coloration of ultra high molecular weight polyethylene fibers using alkyl-substituted monoazo yellow and red dyes

[J]. Fibers and Polymers, 2013, 14(1): 105-109.

DOI:10.1007/s12221-013-0105-8      URL     [本文引用: 2]

WANG X, ZHANG L, LIU M, et al.

Preparation and properties of a modified Fe2O3 pigment for dope dyeing ultrahigh molecular weight polyethylene (UHMWPE) fibers by melt spinning

[J]. Fibers and Polymers, 2021, 22(12): 3343-3350.

DOI:10.1007/s12221-021-0962-5      [本文引用: 2]

MA J, ELMAATY TA, OKUBAYASHI S.

Effect of supercritical carbon dioxide on dyeability and physical properties of ultra-high-molecular-weight polyethylene fiber

[J]. Autex Research Journal, 2019, 19(3): 228-235.

DOI:10.1515/aut-2018-0046      URL     [本文引用: 2]

Supercritical carbon dioxide dyeing, a new type of anhydrous dyeing method, has a lot of advantages, mainly conservation of energy, prevention of pollution, reusability of dye, and many more. This study presents a viable method for the dyeing of an ultra-high-molecular-weight polyethylene (UHMWPE) fabric by using supercritical carbon dioxide (scCO2) as a medium. Five hydrozono propanenitrile dyes that are functional colorants having antibacterial activity were applied for the dyeing of the UHMWPE fabric in scCO2 at a pressure of 20 MPa and at temperature of 120°C. The dyeability of UHMWPE fabric under scCO2 was evaluated by color measurement, whereby the color strength K/S was calculated. As the treating time and concentration of dye increased, the dyeability of the UHMWPE fabric displayed the tendency to continually improve. As decaline was added into scCO2 as the cosolvent, we obtained higher K/S. Furthermore, color fastness to rubbing and sublimation of the dyed UHMWPE fabric were determined according to Japanese Industrial Standards (JIS) L 0849 2 and JIS L 0854, and the trend showed that the increase in fastness corresponded to the increase in duration of the treatment. The influence of scCO2 dyeing on the mechanical properties of UHMWPE was also examined. Consequently, it was found that dyeing in scCO2 containing decaline reduced the crystallinity of the UHMWPE fabric and the breaking strength decreased. The antimicrobial property of UHMWPE dyed with N′-(2-chloro-4-methylphenyl)-2-oxo-2-(p-tolyl)acetohydrazonoyl cyanide was tested against three different microorganisms, and the results have been reported.

ENOMOTO I, KATSUMURA Y, KUDO H, et al.

Graft polymerization using radiation-induced peroxides and application to textile dyeing

[J]. Radiation Physics and Chemistry, 2011, 80(2): 169-174.

DOI:10.1016/j.radphyschem.2010.07.028      URL     [本文引用: 2]

KIM T, JEON S, KWAK D, et al.

Coloration of ultra high molecular weight polyethylene fibers using alkyl-substituted anthraquinoid blue dyes

[J]. Fibers and Polymers, 2012, 13(2): 212-216.

DOI:10.1007/s12221-012-0212-y      URL     [本文引用: 1]

KIM T, CHAE Y.

Synthesis and application of novel high light fastness red dyes for ultra high molecular weight polyethylene fibers

[J]. Fibers and Polymers, 2014, 15(2): 248-253.

DOI:10.1007/s12221-014-0248-2      URL     [本文引用: 1]

刘铭, 张丽平, 张敏, .

铁黄颜料的表面改性及其在超高分子量聚乙烯中的应用

[J]. 纺织学报, 2018, 39(2): 86-90.

[本文引用: 1]

LIU Ming, ZHANG Liping, ZHANG Min, et al.

Surface modification of iron oxide yellow and its application in ultra-high molecular weight polyethylene

[J]. Journal of Textile Research, 2018, 39(2): 86-90.

DOI:10.1177/004051756903900113      URL     [本文引用: 1]

The 4,5-dihydroxy-2-imidazolidinone system, with methyl and/or methylol substituents in the 1,3-positions, has been studied with respect to the geometry of the hydroxyls in the 4,5-positions and with respect to the textile properties of cotton cross-linked with these agents. In addition, some of the impurities and byproducts expected in this system are discussed. Fabrics finished with the cross-linking agents have been compared with respect to acidic and basic hydrolysis of the finish, wrinkle recovery angle, chlorine damage, discoloration, and formaldehyde release.

/