纺织学报, 2024, 45(08): 10-17 doi: 10.13475/j.fzxb.20240403501

纺织科技新见解学术沙龙专栏:先进非织造品与技术

非对称润湿性纤维复合膜的制备及其油水分离性能

杨硕1,2,3, 赵朋举1,2,3, 程春祖1,2,4, 李晨暘1,2,3, 程博闻,1,2,3,4

1.天津科技大学 轻工科学与工程学院, 天津 300457

2.天津科技大学 生物源纤维制造技术国家重点实验室, 天津 300457

3.天津科技大学 天津市制浆造纸重点实验室, 天津 300457

4.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025

Preparation of composite fiber membranes with asymmetric wettability and oil-water separation performance

YANG Shuo1,2,3, ZHAO Pengju1,2,3, CHENG Chunzu1,2,4, LI Chenyang1,2,3, CHENG Bowen,1,2,3,4

1. School of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China

2. State Key Laboratory of Bio-based Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China

3. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China

4. State Key Laboratory of Bio-based Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China

通讯作者: 程博闻(1963—),男,教授,博士。主要研究方向为产业用纺织品。E-mail:bowenc17@tust.edu.cn

收稿日期: 2024-04-15   修回日期: 2024-05-12  

基金资助: 国家自然科学基金项目(22208247)
生物源纤维制造技术国家重点实验室开放基金资助课题(SKL202201)

Received: 2024-04-15   Revised: 2024-05-12  

作者简介 About authors

杨硕(1990—),男,副教授,博士。主要研究方向为轻纺新材料。

摘要

为解决乳化油分离过程中分离效率和通量难以兼顾的问题,以木浆为原料,以氯化锂/N,N-二甲基乙酰胺为溶剂,采用静电纺丝技术制备纤维素纳米纤维膜;以纤维素纳米纤维膜为亲水层,以聚丙烯熔喷布为疏水层,采用热压复合工艺,构建了具有非对称润湿性材料(Janus)特性的纤维复合膜,并应用于乳化油的油水分离。结果表明:在最佳工艺条件下,复合膜的孔径为0.826 μm,分离效率为98.8%,通量为9 798.8 L/(m2·h);复合膜具有优异的重复使用性能,使用10次后其分离效率仍能保持在98%,通量达9 444.5 L/(m2·h);复合膜对正己烷、正庚烷、三氯甲烷、四氯化碳、石油醚均具有显著分离效果,其分离效率均大于98%,通量均在9 000 L/(m2·h)以上。

关键词: 纤维素; 静电纺丝; 纳米纤维; 聚丙烯熔喷布; 油水分离; 非对称润湿性材料

Abstract

Objective Emulsified oil is known to be difficult to separate due to the close combination of water and oil, and Janus composite membrane with multiple wettability is studied aiming to effectively separate the emulsified oil. In this study, the Janus structure is constructed by two layers of fiber membranes with different wettability, and the difference of micro-nanometer size is used to solve the problem of high separation efficiency and low flux of composite membranes, so as to prepare composite membranes with both high separation efficiency and high flux.

Method Janus composite membranes with micro- and nano-structures were prepared from cellulose nanofiber membranes as hydrophilic layer and polypropylene meltblown nonwovens as hydrophobic layer by hot pressing method. The prepared cellulose-polypropylene composite nanofiber membranes were characterized using scanning electron microscope, capillary flow pore size analyzer and contact angle tester. The composite membranes were also tested for pore size, Laplace force, separation performance, repeatability and generalizability.

Results The cellulose nanofiber membrane prepared by electrostatic spinning technology using cellulose as raw material. The results showed that when the spinning voltage was 25 kV, the spinning rate was 5 mL/h and the spinning time was 16 h, the cellulose nanofiber membranes showed the best performance, with an average pore size of 5.029 μm and a thickness of 0.281 mm. The cellulose nanofiber membrane showed amphiphilicity in air, oleophobicity under water, and hydrophilicity under oil, which can be used as a hydrophilic material for Janus structure. Polypropylene meltblown nonwovens exhibits hydrophobicity and lipophilicity in air, hydrophobicity under oil, and lipophilicity under water, and can be used as a hydrophobic material for Janus structure. The Janus membrane was then prepared by laminating cellulose nanofiber membrane and polypropylene meltblown nonwovens in combination with hot pressing process. The areal density of polypropylene meltblown nonwovens, hot pressing temperature and hot pressing pressure were found to affect the performance of the composite membrane. According to the experiments, when the grammage of polypropylene meltblown nonwovens was 30 g/m2, the hot pressing temperature was 130 ℃, and the hot pressing pressure was 30 N, the separation efficiency and flux of the composite membrane are the most balanced, with 98.8% and 9 789.9 L/(m2·h), respectively. The composite membrane demonstrated excellent reuse performance, and after 10 cyclic use, its separation efficiency still maintained at 98%, and the flux 9 444.5 L/(m2·h). The composite membrane showed significant separation effect on these oils to be mentioned, for which the separation efficiency was more than 98%, and the flux was more than 9 000 L/(m2·h).

Conclusion In this study, Janus composite membranes with cellulose nanofiber membrane as hydrophilic layer and polypropylene meltblown nonwovens as hydrophobic layer were prepared. The composite membranes prepared under optimum process conditions achieved the best separation efficiency and flux of 98.8% and 9 798.8 L/(m2·h), respectively. The composite membranes had excellent reusability, and the separation efficiency could still maintain 98% and the flux reached 9 444.5 L/(m2·h) after 10 cyclic use. The composite membranes had significant separation effects on all five common emulsified oils. This idea achieves a balance between separation efficiency and flux, and has theoretical value and practical significance for the development of emulsified oil separation membranes.

Keywords: cellulose; electrostatic spinning; nanofiber; polypropylene meltblown nonwoven; oil-water separation; Janus

PDF (9909KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17 doi:10.13475/j.fzxb.20240403501

YANG Shuo, ZHAO Pengju, CHENG Chunzu, LI Chenyang, CHENG Bowen. Preparation of composite fiber membranes with asymmetric wettability and oil-water separation performance[J]. Journal of Textile Research, 2024, 45(08): 10-17 doi:10.13475/j.fzxb.20240403501

随着工业的快速发展,食品、印染、皮革、石油化工、船舶等众多行业产生了大量的含油废水,这不仅影响着生态环境,还影响着人类的身体健康[1]。根据油和水的结合程度,可将油水混合物分为浮油、分散油、乳化油和溶解油[2]。乳化油可稳定分散至水中,传统的单润湿性分离材料难以对其进行油水分离[3]。分离乳化油的第1步就是破乳,传统的破乳方法包括热化学破乳法、电化学破乳法等[4],存在环境污染、能耗高、操作复杂、产品质量下降等缺点,因此,寻找更加高效、环保、经济的新型破乳方法是当前乳化油分离领域的重要研究方向之一[5]。研究者利用润湿性的不同[6],制备出可产生内驱力的分离材料[7-8],从而使乳化油发生破乳反应[9]。这种具有多种润湿性的分离材料也被称为非对称润湿性膜(Janus膜)[10-11],可针对乳化油进行油水分离[12]

目前,制备Janus膜的方法有不对称修饰和层层自组装。通过简单的原位固定和单面改性方法可成功制备具有不对称润湿性和强抗菌活性的Janus纤维素膜(JCM)[13],其一侧具有超疏水特性,另一侧具有超亲水特性,在无外加能量的条件下,对各种水包油和油包水乳液均表现出优异的分离性能。连续静电纺丝或者同轴静电纺丝是层层自组装制备Janus分离膜常用的方法[14]。Cheng等[15]通过连续静电纺丝的方式制备了聚偏氟乙烯(PVDF)和醋酸纤维素(CA)膜,结合碱处理,开发了一种在空气、水或柴油环境中具有不对称润湿性的脱乙酰醋酸纤维素/聚偏氟乙烯(dCA/PVDF)Janus纳米纤维膜。在柴油/水乳化液分离过程中,超亲水的dCA层能够捕获乳化水,增强Janus膜的破乳能力;而超疏水的PVDF层起到了隔水作用,取得了显著的油水分离效果。

本文以木浆为原料,以氯化锂/N,N-二甲基乙酰胺为溶剂,采用静电纺丝技术,调控纺丝电压、纺丝速率、纺丝时间等关键参数制备纤维素纳米纤维膜;以纤维素纳米纤维膜和聚丙烯熔喷布为基材,利用二者亲疏水性的差异,结合热压工艺,构筑了具有Janus结构的纤维素纳米纤维/聚丙烯熔喷布复合膜,系统分析并评价了复合膜对乳化油的油水分离性能,这对高性能乳化油分离膜的发展具有一定的参考。

1 实验部分

1.1 实验材料

阔叶木浆板,亚太森博(山东)浆纸有限公司;N,N-二甲基乙酰胺(DMAC)、乙醇、石油醚,天津市江天化工技术股份有限公司;氯化锂,天津希恩思奥普德科技有限公司;聚丙烯熔喷布(面密度分别为20、30和40 g/m2),天津泰达洁净有限公司;吐温80,凯玛特(天津)化工科技有限公司;正己烷、四氯化碳,上海麦克林生化科技股份有限公司;正庚烷,山东艾纳生物科技有限公司;三氯甲烷,天津渤化化学试剂有限公司。

1.2 纤维素纳米纤维膜的制备

首先将阔叶木浆板剪成小份,再通过高速粉碎机将阔叶木浆板打成纤维状,并在80 ℃的真空烘干机中干燥至少8 h;分别称取一定量的上述纤维和DMAC放置于玻璃瓶中,二者质量分数为3%,在150 ℃、1 000 r/min的条件下,用磁力搅拌器搅拌150 min;然后加入氯化锂,温度调至120 ℃,搅拌30 min,当纤维素溶解为乳白状液体时,关闭加热。在1 000 r/min的条件下搅拌8 h以上,得到透明、黏稠状的纤维素纺丝液。

以配制的纤维素纺丝液为原料,以定制镂空金属转笼为收集器进行静电纺丝,接收距离设置为20 cm,通过调控纺丝电压、纺丝速率、纺丝时间等参数制备一系列纤维素纳米纤维膜。纺丝结束后,拆除金属网,连同金属网放置于乙醇溶液中,浸泡至少30 min。在60 ℃烘箱中干燥60 min,得到纤维素纳米纤维膜,制备工艺流程如图1(a)所示。

图1

图1   纤维素纳米纤维膜和复合膜的制备工艺流程

Fig.1   Preparation process diagram of cellulose nanofiber membrane (a) and composite membrane (b)


1.3 复合膜的制备

将商业化的聚丙烯熔喷布覆盖到纤维素纳米纤维膜上,结合热压工艺,构建Janus结构,通过调控聚丙烯熔喷布的面密度、热压温度、热压压力等条件制备纤维素纳米纤维/聚丙烯熔喷布复合膜,制备工艺流程如图1(b)所示。

1.4 测试与表征

1.4.1 形貌观察

采用JSM-IT300LV型扫描电子显微镜(SEM)观察纤维膜样品的形貌,测试时需将样品裁剪为3 mm2左右的小块粘贴在导电胶布上,喷金处理后在10 kV条件下观察。

1.4.2 接触角测试

采用Kruss K100接触角/表面张力测量仪测试样品的接触角。将样品用双面胶黏在载玻片上,再把载玻片放到载物台的高分辨率相机镜头下方进行测试。设置滴液量为5 μL,视频录制时间为1 min。

1.4.3 孔径测试

采用Porolux 1000型毛细流孔径分析仪测试样品的孔径。将待测样品剪成直径为2 cm的圆片,将其浸入Porefil 浸润液中浸润并充分浸渍2 min左右,取出样品放置在毛细流孔径分析仪的测量平台上进行测试。

1.4.4 拉普拉斯力测试

首先测试不同液体的表面张力以及不同液体与膜表面的接触角,然后按照下式计算由液面弯曲的曲率产生的拉普拉斯力:

P=2γcosθR

式中:P为拉普拉斯力,Pa;γ为液体的表面张力,N/m;θ为液体与膜表面的接触角,(°);R为半径,m。

1.4.5 分离效率测试

用乳化油将分离膜充分润湿后,利用总有机碳分析仪(TOC)分别测试初始乳液和分离后滤液中油分的含量,通过初始乳液和分离滤液的油分含量比得到分离效率,计算公式为

R=C1-C2C1×100%

式中:R为乳液分离效率,%;C1为乳液中的油分含量,mL/L;C2为滤液中的油分含量,mL/L。

1.4.6 通量测试

在0.1 MPa下将复合膜预压30 min,润湿后,开始倒入液体,记录溶液完全渗透的时间,按照下式计算复合膜的分离通量:

Fa=VAt

式中:Fa为通量,L/(m2·h);V为液体体积,L;A为有效面积,m2;t为时间,h。

1.4.7 分离重复性测试

每次使用复合分离膜对油水乳液进行分离后,将复合膜取出烘干,重复进行复合膜分离效率和通量的测试。

2 结果与讨论

2.1 纤维素纳米纤维膜的性能分析

2.1.1 形貌分析

图2示出纤维素纳米纤维膜的SEM照片。可以看出:随着纺丝速率的增加,单位时间内电场中的纺丝液增多,电场内的电阻增加,单根纤维受到的牵伸力下降,致使纤维的直径增大;而随着纺丝电压的增加,单根纤维受到的牵伸力增加,纤维的直径减小。

图2

图2   不同参数下纤维素纳米纤维膜的SEM照片

Fig.2   SEM images of cellulose nanofiber membranes under different parameters.

(a) Spinning rate 4 mL/h; (b) Spinning rate 5 mL/h; (c) Spinning rate 6 mL/h; (d) Spinning voltage 24 kV; (e) Spinning voltage 26 kV


2.1.2 孔径和厚度分析

表1示出不同参数下纤维素纳米纤维膜的孔径和厚度。可知,在纺丝电压为25 kV、纺丝速率为5 mL/h的条件下,当纺丝时间从8 h增加到24 h时,纤维膜的孔径从7.212 μm减小到4.494 μm,厚度从0.145 mm升至0.425 mm。这是因为随着纺丝时间的增加,纤维膜单位体积内的纤维数增加,所以纤维膜的孔径减小和厚度增加。在纺丝时间为8 h、纺丝速率为5 mL/h的条件下,当纺丝电压从24 kV增加到26 kV时,纤维膜的平均孔径从6.694 μm减小到4.520 μm,厚度从0.166 mm减小到0.135 mm。这是因为纤维的细度增加,所以纤维膜的孔径和厚度降低。在纺丝时间为8 h、纺丝电压为25 kV的条件下,当纺丝速率从4 mL/h增加到6 mL/h时,纤维膜的孔径从4.099 μm增加到6.799 μm,厚度从0.126 mm增加到0.164 mm。这是因为纤维的细度降低,所以纤维膜的孔径和厚度增大。

表1   不同参数下纤维素纳米纤维膜的孔径和厚度

Tab.1  Pore size and thickness of cellulose nanofiber membranes under different parameters

纺丝参数纤维素纳米纤维膜特性
纺丝时
间/h
纺丝电
压/kV
纺丝速率/
(mL·h-1)
孔径/
μm
厚度/
mm
82557.2120.145
162555.0290.281
242554.4940.425
82456.6940.166
82654.5200.135
82544.0990.126
82566.7990.164

新窗口打开| 下载CSV


2.1.3 润湿性分析

图3示出纤维素纳米纤维膜在空气中、水下以及油下的接触角测试结果。

图3

图3   纤维素纳米纤维膜的润湿性

Fig.3   Wettability of cellulose nanofiber membranes.

(a) Water contact angle in air; (b) Oil contact angle in air; (c) Oil contact angle in water; (d) Water contact angle in oil


图3可看出:纤维素纳米纤维膜在空气中的水接触角和油接触角都小于90°;在水下的油接触角大于90°;在油下的水接触角小于90°。可见,纤维素纳米纤维膜在空气中表现出亲水性和亲油性(两亲性),在水下表现出疏油性,在油下表现出亲水性,但润湿时间有所增加,说明相较于空气介质中纤维素纳米纤维膜的亲水性有所降低。

图4示出聚丙烯熔喷布在空气中、水下以及油下的接触角测试结果。可以看出:聚丙烯熔喷布在空气中的水接触角大于90°,油接触角小于90°;在油下的水接触角大于90°;在水下的油接触角小于90°。这说明聚丙烯熔喷布在空气中表现出疏水亲油,在油下表现出疏水性,在水下表现出亲油性。纤维素和聚丙烯材料在不同介质中的润湿性不同,可以用来制备Janus分离膜。

图4

图4   聚丙烯熔喷布的润湿性

Fig.4   Wettability of polypropylene meltblown nonwovens.

(a) Water contact angle in air; (b) Oil contact angle in air; (c) Oil contact angle in water; (d) Water contact angle in oil


2.2 复合膜的性能分析
2.2.1 孔径分析

复合膜的孔径与熔喷布的面密度、热压温度和压力密切相关。不同参数下复合膜的孔径如表2所示。可见,随着聚丙烯熔喷布面密度的增加,复合膜的孔径逐渐减小。在热压温度为130 ℃、热压压力为30 N的条件下,当聚丙烯熔喷布的面密度从20 g/m2增大到30、40 g/m2时,复合膜的孔径从1.178 μm减小至0.826、0.513 μm。在熔喷布面密度为30 g/m2、热压压力为30 N的条件下,当热压温度从110 ℃升高到150 ℃时,复合膜的孔径从1.360 μm减小到0.394 μm。这是因为热压温度增加,聚丙烯熔喷布中纤维熔融增加,聚丙烯纤维之间发生粘连,复合膜的孔径减小。在熔喷布面密度为30 g/m2、热压温度为120 ℃的条件下,当热压压力从10 N增加到50 N时,复合膜的孔径从1.330 μm减小到0.573 μm。这是因为随着热压压力的增加,纤维素纳米纤维膜和聚丙烯熔喷布受到挤压的效果增强,纤维膜内部孔隙减小,复合膜的孔径减小。

表2   不同参数下复合膜的孔径

Tab.2  Pore size of composite membranes under different parameters

工艺参数复合膜的
孔径/μm
熔喷布面密度/
(g·m-2)
热压温
度/℃
热压压
力/N
20130301.178
30130300.826
40130300.513
30110301.360
30120301.165
30140300.614
30150300.394
30120101.330
30120200.983
30120400.709
30120500.573

新窗口打开| 下载CSV


2.2.2 接触角和拉普拉斯力分析

根据拉普拉斯力的公式可知,拉普拉斯力与复合膜的孔径、接触角直接相关[16]。聚丙烯熔喷布为复合膜的表层,因此其参数改变对复合膜接触角的影响最大。图5示出不同参数下复合膜的拉普拉斯力。可知,当聚丙烯熔喷布的面密度从20 g/m2到40 g/m2,复合膜的接触角从122.1°变为125.1°,拉普拉斯力从17.7 Pa增加到43.9 Pa。这是因为随着聚丙烯熔喷布面密度的增加,单位面积聚丙烯熔喷布中的纤维数量增加,表面粗糙度增加,复合膜接触角增大,导致拉普拉斯力增加。

图5

图5   不同参数下复合膜的拉普拉斯力

Fig.5   Laplace force of composite membranes under different parameters.

(a) Contact angle and Laplace force of composite membranes with different meltblown fabric density; (b) Relationship between pore size and Laplace force


图5还可知,孔径与拉普拉斯力呈反比,当孔径越小时,拉普拉斯力越大,破乳能力也越强。

2.2.3 分离性能分析

水包油液滴在接触到上层疏水熔喷布层时,液滴在孔隙之间会发生形变产生拉普拉斯力。随着乳液的聚集,液滴在聚丙烯熔喷布表面的压力增加,液滴形变增加,拉普拉斯力增大,液滴慢慢突破聚丙烯熔喷层。当水包油液滴的外层水表面接触到下层纤维素纳米纤维膜时,会被亲水性的纤维素纤维膜的毛细作用力向下牵引[17],在牵引力和拉普拉斯力双重作用下,水包油液滴发生破裂,水分子被亲水层吸收,油滴被亲油层吸收,从而对乳化油进行破乳和分离,并且亲液层在吸水后形成可以隔离油分子的水层结构[18],如图6所示。

图6

图6   复合膜的分离机制

Fig.6   Separation mechanism of composite membranes


拉普拉斯力是影响乳化油破乳的主要指标,直接反映了复合膜的分离效率和通量。拉普拉斯力越大,复合膜的分离效率越大,但突破所需要的能量也就越多,通量就会减小。具有微纳米结构的复合膜拥有合适的厚度和孔径,最大程度降低了液滴突破所需要的能量,增大通量。不同参数下复合膜对正己烷/水油水混合物的分离效率和通量如表3所示。由表可知:在热压温度为130 ℃、热压压力为30 N的条件下,当聚丙烯熔喷布面密度增加时,接触角增加,拉普拉斯力增加,复合膜的分离效率从95.8%提升至98.9%,通量从17 956.5 L/(m2·h)降低至8 726.1 L/(m2·h);在固定其它参数不变的条件下,当热压温度或热压压力提高时,复合膜的孔径减小,分离效率增加,但通量降低。当熔喷布面密度为30 g/m2、热压温度为130 ℃、热压压力为30 N时,复合膜的分离效率和通量较为均衡,分离效率为98.8%,通量为9 798.8 L/(m2·h)。

表3   不同参数下复合膜的分离效率和通量

Tab.3  Separation efficiency and flux of composite membranes under different parameters

工艺参数复合膜性能
熔喷布面密
度/(g·m-2)
热压温
度/℃
热压压
力/N
分离效
率/%
通量/
(L·(m2·h)-1)
201303095.817 956.5
301303098.89 798.8
401303098.98 726.1
301103098.015 788.1
301203098.412 615.1
301403099.15 183.1
301503099.32 105.1
301201096.833 873.7
301202097.922 962.5
301204098.97 105.1
301205099.35 183.1

新窗口打开| 下载CSV


图7(a)示出分离乳化油前后的光学图片。可知,复合膜成功分离乳化油,使得乳化油数量降低。图7(b)示出乳化油分离前后的粒径变化。可见,分离后乳液粒径减小,说明复合膜对乳化油可产发生破乳反应。

图7

图7   乳化油的分离效果

Fig.7   Separation effect of emulsified oil.

(a) Optical pictures before and after separation; (b) Particle size distribution before and after separation


2.2.4 重复性能分析

图8示出复合膜在不同重复次数下的分离效率和通量。可以看出,随着重复次数的增加,可能存在乳液聚集、复合膜烘干不充分等环境因素的影响,分离膜的分离效率和通量都在一定范围内波动。当复合膜经10次重复使用后,其分离效率为98%,通量为9 444.5 L/(m2·h),分离效果依然显著,这说明分离膜具有优异的重复使用性能。

图8

图8   复合膜在不同重复次数下的分离效率和通量

Fig.8   Separation efficiency and flux of composite membranes at different number of repetitions


2.2.5 广泛适用性分析

复合膜对正己烷、正庚烷、三氯甲烷、四氯化碳和石油醚5种乳化油的分离效果如图9所示。可以看出:复合膜对正己烷乳化油的分离效率为98.8%,通量为9 798.9 L/(m2·h);复合膜对正庚烷乳化油的分离效率为98.75%,通量为11 210.1 L/(m2·h);复合膜对三氯甲烷乳化油的分离效率为99.14%,通量为9 700.6 L/(m2·h);复合膜对四氯化碳乳化油的分离效率为99.52%,通量为9 649.6 L/(m2·h);复合膜对石油醚乳化油的分离效率为98.65%,通量为12 068.3 L/(m2·h)。

图9

图9   复合膜分离不同乳化油的分离效率和通量

Fig.9   Separation efficiency and flux of different emulsified oils separated by composite membranes


3 结论

本文采用静电纺丝技术制备了纤维素纳米纤维膜,将其与聚丙烯熔喷布热压复合,制备了非对称润湿性纤维素纳米纤维/聚丙烯熔喷布复合膜,研究了其对乳化油的油水分离性能,得到如下结论。

1)当纺丝时间为16 h、纺丝电压为25 kV、纺丝速率为5 mL/h,纤维素纳米纤维膜性能最佳,平均孔径为5.029 μm,厚度为0.281 mm。纤维素纳米纤维膜在空气中表现出两亲性,在水下表现出疏油性,在油下表现出亲水性。

2)当熔喷布面密度为30 g/m2、热压温度为130 ℃、热压压力为30 N时,复合膜的分离效率和通量最均衡,分别为98.8%和9 798.9 L/(m2·h)。

3)复合膜具有优异的重复使用性能,经10次使用后,其分离效率为98%,通量为9 444.5 L/(m2·h),分离效果依然显著。复合膜对常见的5种乳化油均具有显著分离效果。

参考文献

GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al.

Oil/water separation techniques: a review of recent progresses and future directions

[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058.

[本文引用: 1]

孙亚红. 超润湿改性膜的制备及其油水分离性能研究[D]. 济南: 山东大学, 2020: 1-2.

[本文引用: 1]

SUN Yahong. Preparation of super-wetting modified membrane and its oil-water separation performance[D]. Ji'nan: Shandong University, 2020: 1-2.

[本文引用: 1]

任宝娜, 皮浩弘, 谷英姝, .

Janus膜的制备及其应用研究进展

[J]. 材料工程, 2020, 48(7): 72-80.

DOI:10.11868/j.issn.1001-4381.2019.000530      [本文引用: 1]

膜材料是现代分离技术和能源开发及利用的基础材料。其中,Janus(罗马双面神)膜由于其两侧的形貌结构或化学组成具有不对称性,因此赋予Janus膜材料某些优于均相膜材料的独特性能。近年来,随着人们对Janus膜认识、研究的深入以及应用领域的拓展和需求的提升,Janus膜的设计、构筑及其在多领域中的应用研究受到材料科学家的广泛关注。基于此,本文对Janus膜的常见类型及制备方法进行综述,归纳并总结其在液体单向透过、油水分离及海水淡化等领域中的应用研究进展,最后,指出Janus膜在制备方法方面所面临的挑战,如不同应用领域所需要的膜厚不同,如何实现膜厚度的精确控制等,并对Janus膜在油水分离、空气中雾水手机等应用中的发展趋势进行展望。

REN Baona, PI Haohong, GU Yingshu, et al.

Advances in the preparation and application of Janus membranes

[J]. Materials Engineering, 2020, 48(7): 72-80.

[本文引用: 1]

BHUSHAN B.

Bioinspired oil-water separation approaches for oil spill clean-up and water purification

[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2150): 1-6.

[本文引用: 1]

QIU L, SUN Y, GUO Z.

Designing novel superwetting surfaces for high-efficiency oil-water separation: design principles, opportunities, trends and challenges

[J]. Journal of Materials Chemistry A, 2020, 8(33): 16831-16853.

[本文引用: 1]

LI J J, ZHOU Y N, LUO Z H.

Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review

[J]. Progress in Polymer Science, 2018, 87: 1-33.

[本文引用: 1]

YANG J, LI H N, CHEN Z X, et al.

Janus membranes with controllable asymmetric configurations for highly efficient separation of oil-in-water emulsions

[J]. Journal of Materials Chemistry A, 2019, 7(13): 7907-7917.

[本文引用: 1]

YANG H C, XIE Y, HOU J, et al.

Janus membranes: creating asymmetry for energy efficiency

[J]. Advanced Materials, 2018, 30(43): 1-6.

[本文引用: 1]

CHENG X, YE Y, LI Z, et al.

Constructing environmental-friendly ″Oil-Diode″ janus membrane for oil/water separation

[J]. ACS Nano, 2022, 16(3): 4684-4692.

[本文引用: 1]

李子昂. 双侧非对称超润湿性膜的制备及在油水分离中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 24-25.

[本文引用: 1]

LI Ziang. Preparation of bilaterally asymmetric superwettable membrane and its application in oil-water separation[D]. Harbin: Harbin Institute of Technology, 2021: 24-25.

[本文引用: 1]

刘明琳. 具有“双流体二极管”性质及智能响应的Janus膜的制备及应用[D]. 郑州: 郑州大学, 2021: 4-5.

[本文引用: 1]

LIU Minglin. Preparation and application of Janus membrane with "two-fluid diode" property and smart response[D]. Zhengzhou: Zhengzhou University, 2021: 4-5.

[本文引用: 1]

YAN L, YANG X, ZHANG Y, et al.

Porous Janus materials with unique asymmetries and functionality

[J]. Materials Today, 2021, 51: 626-647.

[本文引用: 1]

WANG B, LIANG W, GUO Z, et al.

Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature

[J]. Chemical Society Reviews, 2015, 44(1): 336-361.

DOI:10.1039/c4cs00220b      PMID:25311259      [本文引用: 1]

Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

PAN Y, HUANG S, LI F, et al.

Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation

[J]. Journal of Materials Chemistry A, 2018, 6(31): 15057-15063.

[本文引用: 1]

CHU Z, FENG Y, SEEGER S.

Oil/water separation with selective superantiwetting/superwetting surface materials

[J]. Angewandte Chemie International Edition, 2015, 54(8): 2328-2338.

[本文引用: 1]

LV Y, LI Q, HOU Y, et al.

Facile preparation of an asymmetric wettability janus cellulose membrane for switchable emulsions' separation and antibacterial property

[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15002-15011.

[本文引用: 1]

SU Y, FAN T, CUI W, et al.

Advanced electrospun nanofibrous materials for efficient oil/water separation

[J]. Advanced Fiber Materials, 2022, 4(5): 938-958.

[本文引用: 1]

CHENG C, WEI Z, GU J, et al.

Rational design of Janus nanofibrous membranes with novel under-oil superhydrophilic/superhydrophobic asymmetric wettability for water-in-diesel emulsion separation

[J]. Journal of Colloid and Interface Science, 2022, 606: 1563-1571.

[本文引用: 1]

/