纺织学报, 2024, 45(08): 26-34 doi: 10.13475/j.fzxb.20240400901

纺织科技新见解学术沙龙专栏:先进非织造品与技术

光动力抗菌水刺棉的染整一体化制备及其性能

吕子豪1, 徐慧慧1, 袁小红2, 王清清1, 魏取福,1

1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122

2.闽江学院 服装与艺术工程学院, 福建 福州 350108

Preparation and properties of photodynamic antimicrobial spunlaced cotton made by integrated dyeing and finishing

LÜ Zihao1, XU Huihui1, YUAN Xiaohong2, WANG Qingqing1, WEI Qufu,1

1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China

2. College of Clothing and Art Engineering, Minjiang University, Fuzhou, Fujian 350108, China

通讯作者: 魏取福(1964—),男,教授,博士。主要研究方向为功能纳米纺织材料。E-mail:qfwei@jiangnan.edu.cn

收稿日期: 2024-04-2   修回日期: 2024-05-10  

基金资助: 福建省中央引导地方科技发展专项项目(2022L3061)
福建省省级科技创新重点项目(2022G02028)

Received: 2024-04-2   Revised: 2024-05-10  

作者简介 About authors

吕子豪(2000—),男,硕士生。主要研究方向为光敏抗菌抗病毒纤维材料。

摘要

为解决传统抗菌非织造用品防护性能差、制备成本高和潜在毒性大等问题,以水刺棉为基材,通过低分子质量壳聚糖改性、柠檬酸共价交联和光敏剂染整一体化负载工艺,制备了具有高效广谱、抗菌耐久、安全低毒和绿色低碳的光动力抗菌水刺棉。利用紫外/可见光分光光度计、傅里叶红外光谱仪、荧光光谱仪对光动力水刺棉的化学结构和光动力学性能进行表征,通过抗菌实验探究了不同接触时间下光动力水刺棉的抗菌性能与抗菌耐久性能。结果显示:光动力水刺棉在10 min光照下能够淬灭50%以上的1,3-二苯基异苯并呋喃,属于主导能量转移的Ⅱ型光动力机制,在15 min内杀灭99%以上的金黄色葡萄球菌,在60 min内杀灭90%以上的大肠杆菌,表明功能化的水刺棉具有优异的光动力抗菌特性;此外,光动力水刺棉经光漂白和水洗使役后仍具有显著的抗菌耐久性,均可满足生物医用材料对生物安全性的要求,具有大规模制备新一代光触媒非织造用品的应用潜力。

关键词: 水刺棉; 光动力微生物灭活; 壳聚糖胍盐; 抗菌性能; 染整一体化; 功能性纺织品

Abstract

Objective The traditional antibacterial nonwovens are known for their inferior contact comfort, significant potential toxicity, unsatisfactory protective performance and high preparation cost. In this study, skin-friendly spunlaced cotton was selected as the substrate which were then coated by a mixture of low molecular weight chitosan, covalently crosslinked citric acid and photosensitizers. This material is featured efficient and extensive antimicrobial, green and low pollution, stable effect and superior biosafety.

Method Photodynamic antimicrobial spunlaced cotton fabric was prepared by covalent crosslinking and integration of dyeing and finishing. The chemical structure and photodynamic properties of photodynamic spunlaced cotton were characterized using UV-visible spectrophotometer, Fourier infrared spectrometer and fluorescence spectroscopy. The antimicrobial performance and durability of the photodynamic spunlaced cotton were investigated by antimicrobial experiments under different contact periods.

Results The FT-IR spectra and water solubility test demonstrated the successful synthesis of chitosan guanidinium salt (GCS). The color space parameters and color depth curves confirmed that the color depth curves of the photodynamic spunlaced cotton matched the UV-visible absorption spectra of the corresponding photosensitizers, with color depth values of 3.55 and 4.72 for CHL-GCF(spunlaced cotton loaded with chitosan guanidinium salt and sodium copper chlorophyllin) and RB-GCF(spunlaced cotton loaded with chitosan guanidinium salt and rose bengal), respectively. The above results indicated that the cationic surface modified with chitosan guanidinium salt facilitated the loading of negatively charged photosensitizers. The dyeing rate and loading amount of sodium copper chlorophyllin (CHL) and rose bengal (RB) on the GCF surface were further determined by measuring the absorbance of the dye solution before and after the photosensitiser staining and the washing residual solution. The staining rates of CHL-GCF and RB-GCF reached 95.78% and 96.46%, respectively, and the loading amounts of CHL-GCF and RB-GCF after washing were 18.57 mg/g and 17.24 mg/g, respectively. The anionic photosensitiser and actionized spunlaced cotton relied on electrostatic interactions to achieve relatively excellent upstaining and loading effects under salt-free dyeing. The results demonstrated that the photodynamic spunlaced cotton killed more than 99% of S. aureus in 15 minutes and more than 90% of E. coli in 60 min, as well as less potential toxicity to cells, which met the relevant requirements for biomedical materials. Finally, the breaking elongation property, air permeability, water vapor transmissibility and UV resistance of photodynamic spunlaced cotton were investigated. Compared with NCF, the breaking strength retention rate of GCF, CHL-GCF and RB-GCF was approximately 70%. The air permeability and water vapour transmission rate of the photodynamic spunlaced cotton were reduced to 1 442.92 mm/s and 2 475.8 g/(m2·d), respectively, by approximately 15% in both cases. The UV resistance coefficients reached 32.26±1.15 and 19.78±0.48, respectively, with certain UV blocking ability.

Conclusion The spunlaced cotton with photodynamic microbial inactivation effect was successfully developed by adopting spunlaced cotton as the substrate, modified by covalent cross-linking with chitosan guanidinium salt, and then loaded with the photosensitiser chlorophyll copper sodium salt or rose bengal red by salt-free dyeing method. Under the simulated sunlight conditions, the photodynamic spunlaced cotton eliminated over 99% of S. aureus in 15 min, and over 90% of E. coli in 60 min, exhibiting good efficient inactivation performance and usage durability. According to the relevant standards for testing textile physical properties and biosafety indicators, photodynamic spunlaced cotton met the corresponding performance requirements, indicating outstanding contact comfort and safety.

Keywords: spunlaced cotton; photodynamic microbial inactivation; chitosan guanidinium salt; antimicrobial; integration of dyeing and finishing; functional textle

PDF (3888KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吕子豪, 徐慧慧, 袁小红, 王清清, 魏取福. 光动力抗菌水刺棉的染整一体化制备及其性能[J]. 纺织学报, 2024, 45(08): 26-34 doi:10.13475/j.fzxb.20240400901

LÜ Zihao, XU Huihui, YUAN Xiaohong, WANG Qingqing, WEI Qufu. Preparation and properties of photodynamic antimicrobial spunlaced cotton made by integrated dyeing and finishing[J]. Journal of Textile Research, 2024, 45(08): 26-34 doi:10.13475/j.fzxb.20240400901

病菌感染是导致机体致病死亡的重要因素,已被世界卫生组织确认为威胁人类健康的第二大隐患[1]。某些病菌能够在人与人之间快速传播并引发疫情或流行病,对社会经济造成影响。常规的防护用纺织品如口罩和防护服等在病菌阻断领域发挥了不可替代的作用,然而这类产品主要通过物理吸附或过滤来抵御病原体,不具备主动消杀病原体的功能,当被大量丢弃时难以降解,给生态环境带来了沉重的负担。水刺非织造布具备手感柔软、透气透湿和生产高效的特点,成品外观接近传统纺织品,应用潜力巨大[2],因此,开发高效、广谱、低毒、环保和经济的新型非织造材料是当前研究的首要目标。

纺织品的病菌阻断机制主要体现在3个方面:接触杀灭、释放抗菌物质和抗微生物黏附表面。接触杀灭主要包括强正电荷表面吸附病菌致使灭活、光触媒表面产生活性氧破坏病菌结构和光热表面产生局部高温杀灭病菌等[3-5]。释放抗菌物质是通过向微环境下释放能够抑制病菌生长的抑菌剂来达到灭菌的目的,主要包括金属粒子、酚类物质和抗生素等[6-8]。抗微生物黏附表面不同于以上2种形式,是一种被动防御的方法,通过物理或化学技术改造材料表面,使蛋白质等活性分子与抗黏附表面相互排斥[9-10]。抗菌整理工艺与水刺产品特点适配尤为重要,水刺用品不适合采用昂贵的抑菌多肽或潜在毒性大的金属粒子进行抗菌整理,这些工艺不利于其大规模推广和安全应用,因而开发一种新颖的水刺棉抗菌整理方案势在必行[11]。光动力微生物灭活已逐步用于纺织品的抗菌整理,该方法能够在有氧环境中产生强氧化性的活性氧杀死病原体,以探索非特异性方式灭活纺织品表面的病原体。Li等[12]将聚集诱导发光光敏剂ASCP-TPA浸涂在非织造布表面,在10 min内杀灭99.999%的冠状病毒,显现出强效的自消毒能力和实时保护功能。

本文选择具备大量活性位点、表面易于改性、来源应用广泛的水刺棉作为非织造基布。首先,将低分子质量壳聚糖进行亲核加成制备壳聚糖胍盐,以提高其水溶性和吸附性;其次,利用柠檬酸在次磷酸钠的催化作用下共价交联羟基,实现壳聚糖胍盐对水刺棉的阳离子化改性;随后,依靠静电相互作用经染整一体化工艺负载叶绿素铜钠盐或孟加拉玫瑰红,得到的光动力水刺棉具有优异的抗菌性和安全性。光动力水刺棉通过生物基原料和无盐染色的方式制备,生产流程绿色环保、连续简便且易于实现,具有新一代光敏抑菌水刺用品的规模化应用潜力。

1 实验部分

1.1 实验材料和仪器

水刺棉(NCF,50 g/m2),福建省福能南纺卫生材料有限公司;壳聚糖(CS, 平均分子质量为30 000)、二氰二氨(DCD)、三氟甲磺酸钪、叶绿素铜钠盐、孟加拉玫瑰红、1,3-二苯基异苯并呋喃(DPBF)、甲基紫(MV)、噻唑蓝(MTT)、酵母浸膏粉,上海麦克林生化科技有限公司;盐酸、丙酮、无水乙醇、二甲基亚砜(DMSO)、磷酸盐缓冲液、柠檬酸(CA)、次磷酸钠、胰蛋白胨、大豆蛋白胨、氯化钠、琼脂粉,国药集团化学试剂有限公司;新鲜兔血,青岛安提赛生物科技有限公司;金黄色葡萄球菌(ATCC-6538)、大肠杆菌(ATCC-8099),上海协久生物科技有限公司;小鼠成纤维细胞(L929),上海赛柏慷生物技术股份有限公司。所有化学物质均为分析级试剂,使用时无需进一步纯化。

P-B0型小轧车,无锡铭翔机械设备有限公司;Ahiba IR型红外线染色机、Datacolor650型台式分光测色仪,美国Datacolor公司;Nicolet iS10型傅里叶红外光谱仪,美国赛默飞世尔科技有限公司;FLS1000型荧光光谱仪,英国爱丁堡公司;UV-2600型紫外/可见光分光光度计,日本岛津公司;SPARK-10M型酶标仪,瑞士TECAN公司;HD026N型多功能电子织物强力仪,南通宏大实验仪器有限公司;YG461E-II型全自动透气量仪、YG601H-II型电脑式织物透湿仪,宁波纺织仪器厂;YG(B)912E型纺织品防紫外性能测试仪,温州大荣纺织仪器有限公司。

1.2 光动力水刺棉的制备

1.2.1 壳聚糖胍盐的合成

通过亲核加成反应[13]制备壳聚糖胍盐:称取2 g壳聚糖置于100 mL圆底烧瓶中,加入50 mL 1%盐酸水溶液搅拌过夜,直至壳聚糖完全溶解。按照物质的量比为1∶3,称取0.835 g二氰二氨和1.492 g三氟甲磺酸钪,加入上述壳聚糖溶液,将反应体系升温至100 ℃,冷凝回流反应6 h。反应结束后过滤除去不溶物,将滤液加入预冷的丙酮溶液中,可观察到大量白色絮状沉淀析出。将沉淀进一步用乙醇和丙酮洗涤2~3次,置于去离子水复溶并透析3 d,以去除未反应的二氰二氨,冷冻干燥后获得纯化的壳聚糖胍盐(GCS)。

1.2.2 光敏剂的负载

GCS的共价交联:将水刺棉置于1%(质量分数)壳聚糖胍盐、3%(质量分数)柠檬酸和3%(质量分数)次磷酸钠的混合溶液中二浸二轧,轧余率为100%。将轧干的水刺棉在80 ℃下预烘180 s,在160 ℃下焙烘100 s,经多羧酸结构对羟基的共价交联作用,获得壳聚糖胍盐改性的水刺棉(GCF)。

光敏剂的无盐染色:利用红外线染色机实现对光敏剂的负载,光敏剂为叶绿素铜钠盐(CHL)或孟加拉玫瑰红(RB),用量为2%(o.w.f),浴比为1∶50。向染浴中加入GCF,以2 ℃/min的升温速率从室温升至90 ℃,保持90 ℃恒温染色30 min,再以3 ℃/min的降温速率冷却至40 ℃。染色结束后,经皂洗、水洗和干燥得到负载光敏剂的光动力水刺棉CHL-GCF或RB-GCF。

1.3 测试与表征
1.3.1 化学结构表征

采用傅里叶红外光谱仪利用KBr压片法表征壳聚糖胍盐的化学官能团,扫描范围为3 500~500 cm-1,分辨率为4 cm-1,扫描16次。

采用傅里叶红外光谱仪利用ATR全反射法表征光动力水刺棉的化学官能团,扫描范围为3 500~500 cm-1,分辨率为4 cm-1,扫描32次;采用荧光光谱仪确定光敏剂的负载情况,激发光源为氙灯,探测范围为400~800 nm。

1.3.2 色度学测试

光动力水刺棉的外观色彩通过分光测色仪进行测试,光源类型为D65,观察视角为10°,测量口径为8 mm。每次测试前将样品对折4次,以防止水刺棉过薄导致透显现象,记录每个样品的色彩特征值(L*a*b*值)和表观色深值(K/S值)。

1.3.3 光动力学性能测试

光动力水刺棉的光动力学性能通过单线态氧和羟基自由基的产率表征[14]。其中,单线态氧产率根据DPBF的氧化漂白来测试,将光动力水刺棉圆片(直径为16 mm)置于5 mL DPBF(80 μmol/L)的乙醇溶液中,用手持激光笔(532 nm, (85±1) mW/cm2)照射上述溶液特定时间,通过DPBF的紫外曲线变化以间接测定光动力水刺棉的单线态氧产率。对于羟基自由基的检测,更换探针底物为甲基紫(10 μmol/L),其它步骤与上述单线态氧的探测相似,施加光照条件。

1.3.4 光动力抗菌性能测试

细菌活化:取0.1 mL菌液(金黄色葡萄球菌或大肠杆菌)和7 mL细菌培养液置于摇菌管混合,并在37 ℃的恒温气浴振荡箱以100 r/min培养过夜,直至细菌生长到适宜浓度(1×108~3×108 CFU/mL),培养结束后,将菌液转移至离心机中以10 000 r/min离心10 min。然后倾倒上清液并加入等量的磷酸盐缓冲液,涡旋数秒使细菌重新悬浮且均匀分散。

抗菌实验:将上述悬浮的菌液稀释至1×106~3×106 CFU/mL作为实验浓度,灭菌后的光动力水刺棉圆片(直径为16 mm)分别置于24孔板中,每个样品进行3组平行实验。随后向每孔注入0.1 mL上述实验菌液,立即将孔板置于氙灯环境(60 000 lux,波长λ≥ 420 nm)曝光不同时间,其中C15和R15分别表示CHL-GCF和RB-GCF曝光15 min,其它组别依此类推。曝光结束后向每孔加入0.9 mL 磷酸盐缓冲液,手动搅拌30 s使细菌重新分散悬浮,按照1∶10体积比等梯度稀释4次,取50 μL菌液滴在培养基平板上。待滴完每个分区后轻轻晃动平板,置于37 ℃的恒温培养箱中孵育24 h,经平板计数法统计菌落数并计算存活率S和抑菌率A,计算公式如下:

S=NiN×100%A=(1-S)×100%

式中:N为原菌液(对照组)可计数菌落的平均值;Ni为各样品组与对照组对应梯度下的菌落平均值。

1.3.5 抗菌耐久性测试

通过模拟3种使役失效过程(室外光漂白、室内光漂白和家庭洗涤),对光动力水刺棉的抗菌耐久性进行评估。在模拟光漂白失效过程中,氙灯和办公室光源的光强分别为60 000 lux和800 lux, 以分别模拟室外光和室内光强度;洗涤失效过程参照GB/T 3921—2008《纺织品 色牢度试验 耐皂洗色牢度》的实验方法实施,洗涤时间为30 min,水温为40 ℃。在各组样品模拟失效过程结束后,按照1.3.4节方法进行抗菌性能测试。其中:XL-12代表氙灯曝光照射12 h;SW-7代表标准水洗7次;OL-14代表日光灯曝光照射14 d。

1.3.6 物理力学性能测试

参考GB/T 3923.1—2013《纺织品 织物拉伸性能 第1部分:断裂强力和断裂伸长率的测定(条样法)》,随机剪取规格为30 cm×5 cm的水刺棉样品,隔距长度设定为20 cm,拉伸速度设定为10 cm/min,采用多功能电子织物强力仪测试各组样品的应力-应变曲线。参考GB/T 5453—1997《纺织品 织物透气性的测定》,测试面积设定为20 cm2,压降设定为100 Pa,采用全自动透气量仪随机选取不同的位点测试10次透气率,并计算平均值。参考GB/T 12704.1—2009《纺织品 织物透湿性试验方法 第1部分 吸湿法 》,温度和湿度分别设定为38 ℃和90%,水刺棉样品的测试面朝上置于透湿杯,采用电脑式织物透湿仪测试其透湿率。参考GB/T 18830—2009《纺织品 防紫外线性能的评定》,随机剪取4块边长为10 cm的正方形水刺棉样品,调湿平衡后在积分球入口处夹持样品,采用纺织品防紫外性能测试仪测试290~400 nm的紫外线透射比,并读取紫外线防护系数(UPF)。

1.3.7 生物安全性测试

血液安全性:取4 mL抗凝全血加入离心管并以2 000 r/min离心15 min,反复洗涤红细胞,直至上清液无色。然后采用磷酸盐缓冲液稀释至5%(体积分数)以形成红细胞悬浮液,将5 mg水刺棉样品置于离心管中,加入1 mL上述红细胞悬浮液中,并在37 ℃下孵育1 h。待孵育结束,将上述离心管以2 000 r/min离心15 min,采用酶标仪测定上清液在540 nm处的光密度,计算每组样品的溶血率[15]

细胞毒性:光动力水刺棉的细胞毒性采用MTT比色法评估。将L929细胞接种到96孔板中培养直至细胞贴壁生长,按照6 cm2/mL的浸提浓度将灭菌样品置于浸提介质中浸提。随后,将各样品的浸提液与上述L929细胞共同培养24 h,向每个孔加入100 μL的MTT溶液(0.5 g/L)并继续孵育4 h。孵育结束后,移除孔内液体后向每孔加入100 μL DMSO,以100 r/min振荡15 min以溶解生成的甲瓒,使用酶标仪检测各孔570 nm处的光密度值,计算每组样品的细胞相对活性[15]

2 结果与讨论

2.1 壳聚糖胍盐的化学结构分析

为提高壳聚糖水溶性和对光敏剂的负载效率,利用DCD对壳聚糖氨基的亲核加成反应制备壳聚糖胍盐,合成路线如图1(a)所示。图1(b)示出壳聚糖和壳聚糖胍盐的红外光谱。可见,壳聚糖在1 648 cm-1处(酰胺I带C=O的伸缩振动)和1 590 cm-1处(酰胺II带N—H的弯曲振动)具有特征峰[16]。经DCD亲核加成形成壳聚糖胍盐,在1 627 cm-1和1 524 cm-1处产生新特征峰,分别对应于—C=N的伸缩振动和C=NH2+的弯曲振动,以上结果表明壳聚糖的氨基转化为胍基[17-18]。此外,壳聚糖的水溶解度仅为0.164 g/L,几乎完全不溶,而壳聚糖胍盐的水溶解度达到42.68 g/L。这是因为壳聚糖在改性过程中打破了分子内部的强氢键作用,引入亲水性的阳离子型侧链,从而具有较好的水溶性。

图1

图1   壳聚糖胍盐的合成路线和红外光谱图

Fig.1   Reaction route (a) and FT-IR spectra (b) of chitosan guanidinium salt


2.2 光敏剂的上染率与负载量分析

通过紫外光谱测试叶绿素铜钠盐和孟加拉玫瑰红的标准曲线,以进一步确定二者的负载率。拟合的标准曲线如图2所示。其中:叶绿素铜钠盐的拟合曲线为ACHL=0.035 7CCHL-0.021 6,R2=99.999%;孟加拉玫瑰红的拟合曲线为ARB=0.093 9CRB-0.020 1,R2=99.993%。式中:A表示吸光度;C表示浓度,μmol/L。

图2

图2   CHL和RB的标准曲线

Fig.2   Standard curves for CHL and RB


此外,通过测试光敏剂上染前后的染液和洗涤余液的吸光度,进一步确定CHL和RB在GCF表面的上染率和负载量。CHL-GCF和RB-GCF的上染率分别达到95.78%和96.46%,阴离子型光敏剂和阳离子化水刺棉依靠静电相互作用在无盐染色下实现了较好的上染效果。经水洗后的CHL-GCF和RB-GCF的负载量分别为18.57 mg/g和17.24 mg/g。与CHL相比,RB每个单元仅有1个羧酸盐基团,染色位点相对较少,可能导致RB与GCF的静电吸附稳定性较差,从而在后续的洗涤过程部分脱落,致使RB-GCF的负载量相对较低。

2.3 水刺棉的色度学分析

光动力水刺棉的外观特征由色彩空间和色彩深度表征。图3(a)示出色彩空间参数。可以看出,与NCF相比,GCF的彩度(a*b*)略微黄移,明度(L*)略微下降,不影响后续光敏剂的上染和负载。CHL-GCF的亮度明显降低,彩度向绿色和黄色偏移,呈现浅绿色外观;RB-GCF的亮度下降更加明显,彩度向红色和蓝色偏移,呈现浅红色外观。图3(b)示出表观色深曲线,2种光动力水刺棉的表观色深曲线与对应光敏剂的紫外可见吸收光谱相匹配,CHL-GCF和RB-GCF的表观色深(K/S值)分别达到3.55和4.72。以上结果表明,壳聚糖胍盐改性的阳离子表面利于光敏剂的负载。

图3

图3   光动力水刺棉的色度特征

Fig.3   Chromaticity characteristics of photodynamic spunlaced cotton.

(a) Characteristic parameters of color space; (b) Color depth curves


2.4 水刺棉的化学结构分析

通过红外光谱和荧光光谱验证光动力水刺棉的有机官能团特征和荧光发射行为。图4(a)示出光动力水刺棉的傅里叶变换红外光谱。可以看出,与NCF相比,GCF、CHL-GCF和RB-GCF均在1 724 cm-1处出现明显的特征峰,归因于酯基C=O的伸缩振动,这表明多羧酸结构对羟基的成功交联[19]。此外,光敏剂CHL和RB的负载并不影响改性水刺棉的主体结构。图4(b)示出光动力水刺棉的荧光光谱。受激后的光敏剂在从激发态返回基态的过程中会发出荧光,与GCF相比,CHL-GCF和RB-GCF在670 nm和600 nm附近显示出明显的荧光发射特性,与CHL和RB溶液的荧光光谱相匹配,因此,光动力水刺棉的结合机制可能是壳聚糖季铵盐和棉纤维的羟基通过CA的聚羧酸结构以酯化方式共价结合,蚕沙色素通过静电作用附着在阳离子棉纤维表面的季铵基团上。

图4

图4   光动力水刺棉的红外光谱和荧光光谱

Fig.4   FT-IR spectra (a) and fluorescence spectra (b) of spunlaced cotton


2.5 水刺棉的光动力学性能分析

光动力学性能揭示了光动力水刺棉的潜在机制和效用。图5(a)(b)分别示出CHL-GCF和RB-GCF对DPBF随时间变化的吸光度曲线。

图5

图5   光动力水刺棉的光动力学性能

Fig.5   Photodynamic properties of photodynamic spunlaced cotton.

(a) DPBF scavenging curves of CHL-GCF in light; (b) DPBF scavenging curves of RB-GCF in light; (c) MV scavenging curves of RB-GCF in light; (d) DPBF scavenging yields of different substrates and conditions


图5(a)(b)可以看出,CHL-GCF和RB-GCF对DPBF均具有显著的淬灭效果,在10 min内均能达到50%以上,间接表明二者均具备较高的单线态氧产率。

图5(c)示出RB-GCF对MV随时间变化的紫外吸收曲线,可见MV在1 h内淬灭仅22%,间接表明RB-GCF对羟基自由基的产率较低。然而,CHL-GCF对MV没有淬灭效果,表明CHL-GCF不能产生羟基自由基。不同材料和条件下的DPBF底物氧化曲线如图5(d)所示。可以看出,在光照下CHL-GCF、RB-GCF和GCF分别氧化80.15%、55.81%和25.52%的DPBF,而在暗室中CHL-GCF和RB-GCF几乎没有氧化DPBF。以上结果表明,光子和光敏剂(CHL和RB)是高效介导水刺棉光动力行为的必要条件,因此,CHL-GCF通过主导能量转移的光动力II型机制而产生单线态氧,RB-GCF可能同时发挥能量转移的光动力II型机制和电子转移的光动力I型机制产生单线态氧和羟基自由基,从而实现光动力抗菌灭活行为[11]

2.6 水刺棉的抗菌及耐久性能分析

光动力水刺棉通过不同菌种和接触时间来表明抑菌活性的高效性和普适性。图6(a)(b)分别示出光动力水刺棉对金黄色葡萄球和大肠杆菌的抑制效率。结果表明,GCF本身仅依靠阳离子表面对金黄色葡萄球菌和大肠杆菌的抑制作用较差。CHL-GCF和RB-GCF在曝光15 min时均可对金黄色葡萄球菌达到99%以上的抑制效果,其中RB-GCF的抑制效率可达99.99%(达到检测限)。然而,CHL-GCF对大肠杆菌的杀灭效果较差,在60 min内达到92.36%的抑菌率;RB-GCF对大肠杆菌的抗性相对较好,在60 min内达到99.63%的抑菌率。总之,2种光动力水刺棉对革兰氏阳性菌具备短时高效的杀灭效果,但对革兰氏阴性菌的抑制效果不太理想,因为革兰氏阴性菌的胞壁结构更为复杂,阴离子型光敏剂与电负性更强的革兰氏阴性菌之间的静电排斥力更强,导致光毒性物质的作用位点减少[20]

图6

图6   光动力水刺棉的抗菌及耐久性能

Fig.6   Antimicrobial and durability properties of photodynamic spunlaced cotton.

(a) Killing rate of S. aureus under light; (b) Killing rate of E. coli under light; (c) Inhibition rate of CHL-GCF after service; (d) Inhibition rate of RB-GCF after service


光动力水刺棉的主要抗菌机制为:在光子的激发下,负载于水刺棉表面的光敏剂CHL和RB从基态跃迁至单重激发态,经系间窜越到三重激发态,依靠能量转移或电子转移,生成强氧化性的单线态氧或羟基自由基,从而高效氧化细菌的脂质、蛋白质和核酸等生物大分子,对细菌胞壁和内部组分造成不可逆的损伤,从而诱导细菌的凋亡[12,14,20]

光动力水刺棉的抗菌耐久性仍需进一步评估,尤其是光稳定性,是水刺棉应用的关键指标。模拟3种使役环境下光动力水刺棉对金黄色葡萄球菌和大肠杆菌的抑菌率,结果如图6(c)(d)所示。结果表明,在模拟室外光漂白条件下,氙灯老化12 h的CHL-GCF对金黄色葡萄球菌和大肠杆菌的抑菌率分别下降至82.21%和52.73%,而同样条件下RB-GCF对金黄色葡萄球菌和大肠杆菌的抑菌率分别下降至94.69%和88.55%,表明RB-GCF对强光的耐漂白性相对较好,而CHL-GCF在强光下发生光漂白而破坏CHL分子的现象更加明显。值得注意的是,光动力水刺棉对室内光漂白具备较优的稳定性,抑菌效率显著。此外,经过7个标准水洗循环后,CHL-GCF对金黄色葡萄球菌和大肠杆菌的抑菌率分别下降至99.58%和75.53%,RB-GCF对应的抑菌率分别下降至91.34%和80.36%,相比之下RB-GCF对水洗的耐受性较差,与前述制备过程中的皂洗掉色相对明显致使负载量较低的结果一致。

2.7 水刺棉的物理力学性能分析

表1示出光动力水刺棉的断裂强力、透湿率、透气率和紫外线防护系数。相比于NCF而言,GCF、CHL-GCF和RB-GCF的断裂强力保持率约为70%,归因于CA化学交联和高固化温度限制了水刺棉中纤维素大分子链之间的相对滑动。光动力水刺棉CHL-GCF和RB-GCF的透气率和透湿率平均值分别降至1 442.92 mm/s和2 475.8 g/(m2·d),降幅均为15%左右,归因于壳聚糖胍盐的成膜性在一定程度上阻塞了水刺棉的部分孔隙,致使透气透湿性略微下降。此外,CHL-GCF和RB-GCF的紫外线防护系数分别达到32.26±1.15和19.78±0.48,具备一定的紫外线屏蔽能力。

表1   光动力水刺棉的物理力学性能

Tab.1  Physical and mechanical properties of photodynamic spunlaced cotton

试样断裂强力/N透湿率/(g·m-2·d-1)透气率/(mm·s-1)紫外线防护系数
NCF25.81±1.842 934.42±65.321 722.41±62.141.34±0.04
GCF18.62±0.742 446.34±58.341 462.75±45.853.56±0.09
CHL-GCF17.47±1.462 483.95±114.571 429.33±54.7032.26±1.15
RB-GCF17.52±0.922 467.65±85.621 456.51±34.6519.78±0.48

新窗口打开| 下载CSV


2.8 水刺棉的生物安全性分析

作为一种皮肤直接接触的纺织品,光动力水刺棉的生物安全性需要进行评估。图7示出光动力水刺棉的溶血率和细胞相对活性。结果表明,对于血液安全性而言,CHL-GCF和RB-GCF的1 h溶血率分别为1.56%和3.67%,低于ISO 10993-4:2017《医疗器械生物学评价 第4部分:与血液相互作用试验选择》规定的5%,表明光动力水刺棉对血细胞无负面影响。对于细胞相容性而言,NCF显示细胞增殖正常,CHL-GCF和RB-GCF具有轻微的细胞毒性,经GCF、CHL-GCF和RB-GCF的提取物共培养24 h后,L929细胞的相对活性分别为93.78%、86.28%和78.75%,符合ISO 10993-5:2009《医疗器械生物学评价 第5部分:体外细胞毒性试验》的要求,表明光动力水刺棉对细胞的潜在毒性较小。RB-GCF的生物安全性相对较低,原因可能是RB-GCF与溶液体系接触易溢出脱离或RB光敏氧化效果较强。然而,CHL-GCF和RB-GCF的血液安全性和细胞安全性均在合理范围内,满足生物医用材料的相关要求,这是考虑将这类光动力纺织品转化为实际应用的必要一步。

图7

图7   光动力水刺棉的生物安全性能

Fig.7   Biosafety properties of photodynamic spunlaced cotton.

(a) Haemolytic property; (b) Cytotoxicity


3 结论

本文以水刺棉为基材,经壳聚糖胍盐共价交联改性,再通过无盐染色方法负载光敏剂叶绿素铜钠盐或孟加拉玫瑰红,开发了一种具备光致微生物灭活效果的抗菌水刺棉,得到如下结论。

1) 通过红外光谱和荧光光谱验证了水刺棉的阳离子化和光敏剂的成功负载,壳聚糖胍盐和棉纤维的羟基经柠檬酸以酯基的形式共价结合,阴离子型光敏剂依靠静电作用吸附在阳离子化棉表面,从外观上分别呈现浅绿色和浅红色。

2) 在模拟日光条件下,光动力水刺棉在15 min内杀灭99%以上的金黄色葡萄球菌,在60 min内杀灭90%以上的大肠杆菌,以上优势归因于光敏剂在光照下可产生强氧化性的活性氧杀灭微生物,表现出优良的高效灭活性能和使役耐久性。

3) 光动力水刺棉的物理性能和生物安全性指标均满足相关标准要求,表现出良好的接触舒适性和低毒性。

参考文献

HONIGSBAUM M.

Superbugs and us

[J]. The Lancet, 2018. DOI:10.1016/s0140-6736(18)30110-7.

[本文引用: 1]

刘静. 水刺非织造布微胶囊整理技术的研究与应用[D]. 上海: 东华大学, 2021: 1-30.

[本文引用: 1]

LIU Jing. Research and application of microencapsulation finishing technology for spunlace nonwovens[D]. Shanghai: Donghua University, 2021: 1-30.

[本文引用: 1]

翟丽莎, 王宗垒, 周敬伊, .

纺织用抗菌材料及其应用研究进展

[J]. 纺织学报, 2021, 42(9): 170-179.

[本文引用: 1]

ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al.

Research progress on antimicrobial materials for textiles and their applications

[J]. Journal of Textile Research, 2021, 42(9): 170-179.

[本文引用: 1]

王志辉, 徐羽菲, 郭豪玉, .

光动力抗菌技术在纺织品上的应用研究进展

[J]. 纺织学报, 2021, 42(11): 187-196.

DOI:10.13475/j.fzxb.20200903610      [本文引用: 1]

为研究光敏剂在纺织材料上负载的抗菌效果和其在纺织品改性中应用的可能性,通过文献调研的方式对光动力抗菌的研究背景、光敏剂的种类、抗菌纺织品的应用情况、光敏剂常用的负载形式进行归纳整理。研究表明:作为一种能高效杀菌的新型抗菌材料,光动力抗菌纺织品具有良好的发展前景;通过化学共价键合光敏剂的改进负载方法能够解决常见负载方式中出现的结合牢度差、重复利用性不佳等问题,进一步拓宽抗菌材料的研发途径;目前光敏剂对其光敏抗菌性能均未能做到精准调控,今后的研究应当通过控制光敏剂的种类及光敏剂浓度等因素实现对光敏抗菌性能的把控。

WANG Zhihui, XU Yufei, GUO Haoyu, et al.

Progress in the application of photodynamic antimicrobial technology on textiles

[J]. Journal of Textile Research, 2021, 42(11): 187-196.

DOI:10.13475/j.fzxb.20200903610      [本文引用: 1]

In order to study the antibacterial effect of photosensitizers loaded on textile materials and the possibility of its application for textile modifications, the research background of photodynamic antibacterial, types of photosensitizers, current applications of antibacterial textiles, and photosensitizers were systematically reviewed. The commonly used loading forms of the drug are examined, and the conclusions and future prospects are summarized. The review indicates that photodynamic antibacterial textiles are a new type of antibacterial material that can be effectively sterilized and has a good development prospect. The improved loading method through chemical covalent bonding of photosensitizers can solve the problems of poor binding fastness and poor reusability associated with the commonly used loading methods, and can further broaden the research and development path of antibacterial materials. At the same time, it is realized that the current photosensitizers have not been able to control accurately their photosensitizing antibacterial properties. Future research should control the photosensitive antibacterial properties by controlling the types of photosensitizers and the concentration of photosensitizers.

YAN B, BAO X, LIAO X, et al.

Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC

[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2132-2145.

[本文引用: 1]

沈慧颖, 吕子豪, 庄粟裕, .

表面沉积铜纳米颗粒的细菌纤维素/壳聚糖交联复合膜的制备及其抗菌性能研究

[J]. 化工新型材料, 2021, 49(3): 168-172.

[本文引用: 1]

SHEN Huiying, Zihao, ZHUANG Suyu, et al.

Preparation of bacterial cellulose/chitosan cross-linked composite film with copper nanoparticles deposited on the surface and its antimicrobial properties

[J]. New Chemical Materials, 2021, 49(3): 168-172.

[本文引用: 1]

SHEN L, JIANG J, LIU J, et al.

Cotton fabrics with antibacterial and antiviral properties produced by a simple pad-dry-cure process using diphenolic acid

[J]. Applied Surface Science, 2022. DOI:10.1016/j.apsusc.2022.154152.

[本文引用: 1]

JO Y K, HEO S-J, PEREDO A P, et al.

Stretch-responsive adhesive microcapsules for strain-regulated antibiotic release from fabric wound dressings

[J]. Biomaterials Science, 2021, 9(15): 5136-5143.

DOI:10.1039/d1bm00628b      PMID:34223592      [本文引用: 1]

Bacterial infection of a wound is a major complication that can significantly delay proper healing and even necessitate surgical debridement. Conventional non-woven fabric dressings, including gauzes, bandages and cotton wools, often fail in treating wound infections in a timely manner due to their passive release mechanism of antibiotics. Here, we propose adhesive mechanically-activated microcapsules (MAMCs) capable of strongly adhering to a fibrous matrix to achieve a self-regulated release of antibiotics upon uniaxial stretching of non-woven fabric dressings. To achieve this, a uniform population of polydopamine (PDA)-coated MAMCs (PDA-MAMCs) are prepared using a microfluidics technique and subsequent oxidative dopamine polymerization. The PDA-MAMC allows for robust mechano-activation within the fibrous network through high retention and effective transmission of mechanical force under stretching. By validating the potential of a PDA-MAMCs-laden gauze to release antibiotics in a tensile strain-dependent manner, we demonstrate that PDA-MAMCs can be successfully incorporated into a woven material and create a smart wound dressing for control of bacterial infections. This new mechano-activatable delivery approach will open up a new avenue for a stretch-triggered, on-demand release of therapeutic cargos in skin-mountable or wearable biomedical devices.

ZHANG P, CHEN X, BU F, et al.

Dual coordination between stereochemistry and cations endows polyethylene terephthalate fabrics with diversiform antimicrobial abilities for attack and defense

[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9926-9939.

[本文引用: 1]

YANG K, SHI J, WANG L, et al.

Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review

[J]. Journal of Materials Science & Technology, 2022, 99: 82-100.

[本文引用: 1]

吕子豪, 廖师琴, 陈娟芬, .

光动力抗菌面料协同增效技术的研究进展

[J]. 化工新型材料, 2023, 51(8): 238-244.

[本文引用: 2]

Zihao, LIAO Shiqin, CHEN Juanfen, et al.

Research progress on synergistic technology of photodynamic antimicrobial fabrics

[J]. New Chemical Materials, 2023, 51(8): 238-244.

[本文引用: 2]

LI B, WANG D, LEE M M S, et al.

Fabrics attached with highly efficient aggregation-induced emission photosensitizer: toward self-antiviral personal protective equipment

[J]. ACS Nano, 2021, 15(8): 13857-13870.

DOI:10.1021/acsnano.1c06071      PMID:34313425      [本文引用: 2]

Personal protective equipment (PPE) is vital for the prevention and control of SARS-CoV-2. However, conventional PPEs lack virucidal capabilities and arbitrarily discarding used PPEs may cause a high risk for cross-contamination and environmental pollution. Recently reported photothermal or photodynamic-mediated self-sterilizing masks show bactericidal-virucidal abilities but have some inherent disadvantages, such as generating unbearable heat during the photothermal process or requiring additional ultraviolet light irradiation to inactivate pathogens, which limit their practical applications. Here, we report the fabrication of a series of fabrics (derived from various PPEs) with real-time self-antiviral capabilities, on the basis of a highly efficient aggregation-induced emission photosensitizer (namely, ASCP-TPA). ASCP-TPA possesses facile synthesis, excellent biocompatibility, and extremely high reactive oxygen species generation capacity, which significantly outperforms the traditional photosensitizers. Meanwhile, the ASCP-TPA-attached fabrics (ATaFs) show tremendous photodynamic inactivation effects against MHV-A59, a surrogate coronavirus of SARS-CoV-2. Upon ultralow-power white light irradiation (3.0 mW cm), >99.999% virions (5 log) on the ATaFs are eliminated within 10 min. Such ultralow-power requirement and rapid virus-killing ability enable ATaFs-based PPEs to provide real-time protection for the wearers under indoor light irradiation. ATaFs' virucidal abilities are retained after 100 washings or continuous exposure to office light for 2 weeks, which offers the benefits of reusability and long-term usability. Furthermore, ATaFs show no toxicity to normal skin, even upon continuous high-power light illumination. This self-antiviral ATaFs-based strategy may also be applied to fight against other airborne pathogens and holds huge potential to alleviate global PPE supply shortages.

LAN J, WU Y, LIN C, et al.

Totally-green cellulosic fiber with prominent sustained antibacterial and antiviral properties for potential use in spunlaced non-woven fabric production

[J]. Chemical Engineering Journal, 2023.DOI:10.1016/j.cej.2023.142588.

[本文引用: 1]

沈慧颖. 细菌纤维素-二硫化钼基材料的制备及其光敏性能研究[D]. 无锡: 江南大学, 2022: 1-30.

[本文引用: 2]

SHEN Huiying. Preparation of bacterial cellulose-molybdenum disulfide-based materials and their photosensitive properties[D]. Wuxi: Jiangnan University, 2022: 1-30.

[本文引用: 2]

王雅梅. 纤维素基医用纺织敷料的制备及性能研究[D]. 上海: 东华大学, 2024: 1-30.

[本文引用: 2]

WANG Yamei. Preparation and properties of cellulose-based medical textile dressings[D]. Shanghai: Donghua University, 2024: 1-30.

[本文引用: 2]

PAN Q, ZHOU C, YANG Z, et al.

Preparation and characterization of chitosan derivatives modified with quaternary ammonium salt and quaternary phosphate salt and its effect on tropical fruit preservation

[J]. Food Chemistry, 2022.DOI:10.1016/j.foodchem.2022.132878.

[本文引用: 1]

SALAMA A, HASANIN M, HESEMANN P.

Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups

[J]. Carbohydrate Polymers, 2020.DOI:10.1016/j.carbpol.2020.116363.

[本文引用: 1]

ZHOU Z, ZHENG C, LIU Y, et al.

Chitosan biguanide induced mitochondrial inhibition to amplify the efficacy of oxygen-sensitive tumor therapies

[J]. Carbohydrate Polymers, 2022.DOI:10.1016/j.carbpol.2022.119878.

[本文引用: 1]

ZHANG T, ZHANG S, QIAN W, et al.

Reactive dyeing of cationized cotton fabric: the effect of cationization level

[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(36): 12355-12364.

[本文引用: 1]

WANG T, XU L, SHEN H, et al.

Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose

[J]. Cellulose, 2020, 27(2): 991-1007.

DOI:10.1007/s10570-019-02852-9      [本文引用: 2]

With the aim of developing self-disinfecting materials to prevent pathogen transmission from surfaces to new hosts, here we report a simple and eco-friendly way to prepare photodynamic bacterial cellulose (BC) onto which the naturally-occurring photosensitizer hypocrellin (Hc) has been covalently appended. The resultant hypocrellin-grafted BC membrane (Hc-BC) was characterized by both physical (SEM, TGA, XRD) and spectroscopic (IR, diffuse reflectance UV-visible) methods, and the photosensitizer loading was found to be 155 nmol Hc/mg membrane. Indirect cytotoxicity tests employing mouse skin fibroblast (L929) cells showed no changes in cell viability, demonstrating that the Hc-BC membrane lacked any leachable components (e.g., unreacted coupling agent or hypocrellin) that could be cytotoxic to mammalian cells. The photodynamic antibacterial activity of Hc-BC was evaluated against gram-positive S. aureus (ATCC-6538) and gram-negative E. coli strain 8099. Our results demonstrated a 99.5 + % (2.7 log units) reduction in S. aureus upon illumination (Xe lamp, 65 +/- 5 mW/cm(2), 420-780 nm; 30 min), however, no statistically significant inactivation of E. coli was observed. Potentiation with potassium iodide was found to increase the antibacterial efficacy of Hc-BC against S. aureus to 99.997% (4.8 log units) at 10 mM KI, while E. coli was inactivated by 99.1% (2 log units) at 100 mM KI, with the increase in inactivation being attributable to short-lived reactive iodide radicals that are the major biocidal agents in the potentiation of Hc-BC by KI. Taken together, our findings demonstrated that hypocrellin-grafted bacterial cellulose is a sustainable material from which potent photodynamic antibacterial materials may be derived.

/