纺织学报, 2024, 45(08): 54-64 doi: 10.13475/j.fzxb.20240400402

纺织科技新见解学术沙龙专栏:先进非织造品与技术

熔融双组分超细纤维成纤技术研究进展

朵永超1, 宋兵1, 张如全2, 许秋歌1, 钱晓明,1

1.天津工业大学 纺织科学与工程学院, 天津 300387

2.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200

Research progress in melt spinning technology for bicomponent microfibers

DUO Yongchao1, SONG Bing1, ZHANG Ruquan2, XU Qiuge1, QIAN Xiaoming,1

1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China

2. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China

通讯作者: 钱晓明(1964—),男,教授,博士。主要研究方向为新型非织造材料制备技术、服装功能与舒适性。E-mail:qxm@tiangong.edu.cn

收稿日期: 2024-04-1   修回日期: 2024-04-26  

基金资助: 山东省科技计划项目(2021CXGC011001)
天津市科技计划项目(17PTSYJC00150)

Received: 2024-04-1   Revised: 2024-04-26  

作者简介 About authors

朵永超(1992—),男,讲师,博士。主要研究方向为新型非织造材料制备技术。

摘要

为深入探究熔融双组分复合纤维原纤化的超细纤维成形技术,介绍了共混纺丝和共轭纺丝2种复合纺丝技术及其在生产超细纤维时的原料及工艺,具体阐述了海岛型复合纤维和裂离型复合纤维开纤工艺及特点,分析了聚合物及工艺对复合纤维生产超细纤维的影响。综述了熔融复合纤维原纤化用到的化学溶剂开纤、水溶开纤、机械开纤等开纤技术。概述了用熔融复合纺丝技术生产的超细纤维材料在合成革、过滤与分离、医用防护、卫生健康等领域中的应用,提出了复合纺丝技术生产超细纤维的发展方向,并指出复合纤维有望通过成形技术实现原料多元化、纤维细旦化、材料功能化等方面的不断发展和创新,将推动相关产业朝着更加可持续和环保的方向发展。

关键词: 双组分纤维; 超细纤维; 复合纺丝; 海岛型纤维; 裂离型纤维; 开纤技术

Abstract

Significance Microfiber materials, as a strategic emerging material, play an indispensable role in national economic and social development, constituting a focal point of global competition within the textile industry. Exhibiting characteristics such as low fiber linear density, low bending stiffness, large specific surface area, adsorption capability, and strong capillary effects, microfibers find widespread applications in fields including medical hygiene, personal protection, environmental sustainability, energy conservation, clothing, and home textiles. In the fabrication processes of microfibers, nonwovens produced via methods such as melt blowing, flash evaporation, and electrospinning exhibit relatively low strength, limiting their usage to filtration and medical protective applications. While direct melt spinning offers lower production costs, stringent process requirements often hinder the attainment of high-quality microfibers. In the realm of composite spinning, the production of microfiber materials involves the utilization of physical or chemical methods to achieve the formation of bicomponent composite fibers. This method is characterized by its high speed, efficiency, and productivity, making it one of the most effective techniques for mass-producing high-strength microfiber materials.

Progress This paper provides an overview of the forming processes, polymer properties, and technical requisites involved in the production of microfibers through composite spinning. It elaborates on the polymer selection, fiber formation mechanisms, and distinctive traits of sea-island and split composite fibers. Moreover, it delves into the principles of fiber precursor formation using chemical and physical methods, discussing the merits and drawbacks of the processes. Furthermore, based on these characteristics, it analyzes the selection of different composite fiber polymers and the trends in process development both domestically and internationally. It examines their impact on the production of microfibers and nonwoven materials. The application domains of melt composite fibers for microfibers material production are summarized, and future directions for the development of composite fiber production for microfibers are proposed.

Conclusion and Prospect The preparation of microfibers nonwovens through biocomponent composite spinning holds vast potential applications in synthetic leather base, medical hygiene, precision filtration, apparel, and various other fields. These materials have been widely produced and employed in numerous applications. With the emergence of green concepts such as carbon neutrality and energy conservation, the development of efficient and eco-friendly fiber spinning technologies, such as low-energy consumption (split fiber easy-splitting technology) and chemical-free methods (thermoplastic polyvinyl alcohol, water-soluble polyester composite spinning), represents the future direction of composite fiber production for microfibers. Additionally, as nonwoven technology continues to advance and interdisciplinary concepts gain traction, composite fibers are poised to achieve further refinement in fiber morphology through shaping techniques, functionalization through advanced finishing technologies, and product greening through material-process integration, thus better serving society.

Keywords: bicomponent fiber; microfiber; composite spinning; sea-island fiber; split fiber; splitting technology

PDF (16005KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朵永超, 宋兵, 张如全, 许秋歌, 钱晓明. 熔融双组分超细纤维成纤技术研究进展[J]. 纺织学报, 2024, 45(08): 54-64 doi:10.13475/j.fzxb.20240400402

DUO Yongchao, SONG Bing, ZHANG Ruquan, XU Qiuge, QIAN Xiaoming. Research progress in melt spinning technology for bicomponent microfibers[J]. Journal of Textile Research, 2024, 45(08): 54-64 doi:10.13475/j.fzxb.20240400402

超细纤维材料作为战略新兴材料的重要组成部分,在国民经济与社会发展中发挥着不可或缺的作用。超细纤维具有纤维线密度小,抗弯刚度低,比表面积大,吸附性、毛细效应强等特点,且具有优异的保暖性和防水透气性[1-3],因此,超细纤维纺织品在医疗卫生、个人防护、环保能源、服装家居等领域得到了广泛的应用[4-8]

现有的纤维细旦化手段主要包括直接纺丝法(熔喷法[1]、闪蒸法[2]和静电纺[3]等)、复合纺丝法[4]。随着纤维向超级细化方向的发展,纳米纤维技术逐渐成为国内外学者的研究热点。目前,纳米纤维的制备方法有拉伸法[5]、微相分离法[6]、自组装法[7]、阳极氧化铝(AAO)模板法[8]等,制备的纤维直径通常在500 nm以下,但目前难以工业化量产。采用熔喷法、闪蒸法、静电纺丝法制备的非织造布强力较低,仅用于过滤、医疗防护等领域。目前,用于规模化生产,且单纤强力较高的超细纤维制备方法主要有聚合物直接熔融纺丝法和复合纺丝法。

直接熔融纺丝法是指用常规熔融纺丝方法改良或优化其工艺设备直接生产超细纤维,其不需要经过后加工处理就可生产单一组分的超细纤维。相比于常规熔融纺丝,直接熔融纺丝法需要适当降低纺丝熔体黏度、提高熔体纯净度,且对纺丝工艺中侧吹风温度与风速要求较高[9]。意大利Vallesina公司通过直接熔融纺丝法生产出线密度为0.5 dtex的超细纤维。日本旭化成、三菱株式会社分别以聚对苯二甲酸乙二醇酯(PET)、聚丙烯腈(PAN)为原料直接生产出线密度为0.1~0.5 dtex的超细纤维。该方法虽然生产成本低,但对生产工艺要求严格,难以获得高质量的超细纤维[9-10]

复合纺丝法采用物理或化学方法实现双组分复合纤维原纤化成形技术,具有高速、高效、高产的特点,是批量生产高强超细纤维材料最有效的技术手段之一[11-12]。本文综述了用复合纺丝法生产超细纤维的原料及工艺,重点阐述了复合纤维开纤工艺及特点,分析了相关方法存在的不足,提出了用复合纺丝法生产超细纤维的发展方向,以期为超细纤维的生产与应用提供参考。

1 复合纺丝技术

复合纺丝法根据纺丝技术可分为共混纺丝和共轭纺丝2种。

1.1 共混纺丝

共混纺丝是将2种或2种以上热力学不相容的聚合物切片或熔体按照一定比例混合熔融,经螺杆挤出机挤出后通过熔体管道纺丝组件流出形成纤维的纺丝方法,其工艺流程示意图如图1所示。在超细纤维的生产中主要纺制不定岛型复合纤维(见图2(a))。海/岛组分间的比例严重影响熔体的流动状态,共混熔融、挤压等过程中岛组分在剪切流动中易无规则凝聚[13]

图1

图1   共混纺丝示意图

Fig.1   Schematic diagram of co-blended spinning


图2

图2   复合纤维截面示意图

Fig.2   Schematic diagram of composite fiber cross-section.

(a) Indefinite-island-fiber cross-section; (b) Fixed-island- fiber cross-section; (c) Split-fiber cross-section


不定岛纤维制备过程中,岛组分纤维的细度、数量、分布及长度都在一定范围内存在随机性。岛相聚合物的黏度高于海相聚合物,其中海相主要以低密度聚乙烯(LDPE)为主[14]。当岛组分比例较少时,岛相在海相中的分布相对稀疏,牵伸后制备的纤维线密度较小,均匀度较好[15]。但是岛组分比例过少会导致超细纤维的生产效率过低,成本过高。当岛组分比例较高时,其在海组分的分布较为密集,岛组分间易发生无规则凝聚,生产的超细纤维均匀度降低。不定岛纤维海组分经溶剂萃取,岛组分纤维线密度最细可达0.000 1 dtex[16-17],一般在0.01~0.001 dtex之间。采用共混纺丝制备超细纤维的优点是对纺丝设备的要求不高,利用常规纺丝设备就能完成,其缺点是开纤后制备的纤维细度分布不均匀,纤维尺寸不可控。

1.2 共轭纺丝

共轭纺丝是2种或2种以上热力学不相容的纺丝熔体,经各自的熔体通道、分配板分配,最后在喷丝板处汇合形成复合熔体流,从同一喷丝孔中喷出,使纺丝熔体排列成预先设计的纤维截面形状,纺制得到复合纤维,其工艺流程示意图如图3所示。通过共轭纺丝可制备定岛型复合纤维或裂离型复合纤维[18]

图3

图3   共轭纺丝示意图

Fig.3   Schematic diagram of conjugate spinning


制备定岛型复合纤维要求2种聚合物在复合纺丝时的熔体黏度相近,可自由变化海岛比例,并可通过调控超细纤维的纤度和截面形状降低生产成本。定岛型复合纤维中岛组分保持单丝状态,在海相中均匀分散,岛数由喷丝板决定,其岛分布、数量均固定,纤维截面如图2(b)所示。利用定岛纺丝制备的超细纤维线密度一般在0.05~0.1 dtex之间[19]

裂离型纤维纺丝工艺与定岛型纤维基本相同,只是通过喷丝板的设计使得纤维的截面结构不同。同时裂离型纤维纺丝要求2种聚合物在加工时的熔体黏度相近以保证纺丝纤维界面清晰。通常情况下,当2种聚合物溶解度参数值大于0.5时,在复合纺丝中2种聚合物互不相容,可用于裂离型纤维的制备[20],纤维截面如图2(c)所示。目前,裂离型复合纤维中的桔瓣型纤维被广泛用于超细纤维的生产,裂离后的超细纤维线密度一般在0.05~0.3 dtex之间[21]

共轭纺丝对纺丝组件要求极高,其工艺过程要求在一个尽可能小的空间内,并可向不同位置精确分送若干熔体流。传统喷丝板受限于钢材强度、加工精度(如研磨、钻孔、放电加工和激光处理等),导致熔体在纺丝组件内滞留时间较长(15~30 min),形成熔体流动死角,造成高聚物的热降解,导致不同纺丝温度窗口聚合物的复合纺丝难度大,易形成驻头丝并影响喷丝板的使用寿命[22]。目前美国Hills公司使用类似于制造印刷电路板的技术来制造熔体计量板和分配板,生产薄型纺丝组件,减少了因辐射和对流造成的热量损失,使得原料的范围更广、组分比例选择的范围更大,并可生产纤维截面更复杂的多组分纤维。美国Hill公司通过喷丝板的精密设计,纺制出含900个“岛”的海岛超细纤维,开纤后纤维的直径仅有300 nm。日本帝人以PET为“岛”组分,通过喷丝板设计和可形成超量“岛”断面的聚合物技术,生产的海岛纤维“岛”数量约为1 000,经开纤后得到高强度的PET纳米纤维NanofrontTM[23]

2 复合纤维开纤技术

通过熔融复合纺丝技术制备的双组分纤维需要经过化学或物理方法实现纤维的原纤化,得到具有力学性能优异、比表面积大和可规模化生产等特点的超细纤维。海岛型复合纤维主要通过溶解去除法(去“海”留“岛”)生产超细纤维。目前适用于制造海岛型纤维的聚合物有:聚乙烯(PE)、聚丙烯(PP)、PET、聚酰胺(PA)、聚苯乙烯(PS)、热塑性聚乙烯醇(TPVA)、水溶性聚酯(WSP)等,其纤维中的岛组分有PET、PA、PP及其改性聚合物等;海组分有PS、PE(有机溶剂可溶)、COPET(热碱溶液可溶)、TPVA、WSP(热水可溶)等及其改性聚合物[11-12]。裂离型复合纤维可通过双组分的剥离实现复合纤维的原纤化。适用于生产裂离型超细纤维的聚合物有:PET、PA、PP、PE、PS、PVA、WSP等及其改性聚合物[24],需要2种聚合物在相同纺丝温度下进行匹配。

熔融复合纤维的原纤化包括化学溶剂开纤、水溶开纤、机械开纤等方法。

2.1 化学溶剂开纤法

化学溶剂开纤是利用2组分纤维中2种聚合物的不同化学特性,通过特定的化学溶剂溶解剥离其中一种聚合物,从而保留另外一种聚合物形成超细纤维的技术[25]。根据复合纺丝中所用聚合物的不同,目前主要采用苯萃取法、碱减量法及酸减量法等。

2.1.1 苯萃取法

利用LDPE等聚合物可在甲苯或二甲苯溶液中溶解的原理,通过合理选择海岛组分的原料,采用苯萃取法对纤维进行开纤[26]。目前苯萃取法主要用于生产不定岛复合纤维。日本可乐丽公司采用LDPE与PA6/PET复合纺丝生产定岛型纤维,经苯萃取法得到超细纤维材料。Xu等[27]使用甲苯溶液对PA/LDPE海岛非织造材料进行开纤,研究表明,在85 ℃的萃取温度、110 min的处理时间条件下可获得最佳的开纤效果,萃取率可达55%左右。

2.1.2 碱减量法

碱减量法是一种常用于复合纤维的开纤方式,在海岛纤维中常用于定岛复合纤维的开纤,其中海组分通常采用PET/COPET作为原料。Kang等[28]对COPET/PET海岛纤维的碱减量探究表明:随着碱液浓度的增加,所获得的岛组分纤维变得更细,但碱溶液对PET组分的溶解导致纤维强力下降。目前,随着COPET制备工艺的逐渐成熟,碱减量开纤工艺也逐渐工业化。通常情况下,在NaOH质量分数为5%,碱处理时间为30 min,COPET作为海组分的工艺条件下,其溶解率可达99%以上。

生产裂离型双组分纤维时,一般复合纤维的一种组分为碱溶性聚酯(如PET、PBT、PTT及其改性聚酯等),利用碱减量法可获得良好的开纤效果,但是该开纤方法通过溶去部分纤维组分实现纤维裂离,对纤维的损伤较大,如PET/PA6双组分纤维的开纤率会随着碱液浓度、温度的增加和时间的延长而逐渐增大,但纤维损失量也增大。同时,纤维组分的大量流失破坏了纤网的微结构,导致纤网力学性能下降,纤维缠结紧密度降低,孔隙率和平均孔径增大[29]

2.1.3 酸减量法

酸减量法主要应用于生产裂离型超细纤维。酸减量法与碱减量法类似,虽在实验室取得了阶段性成果,但在工业化生产中应用较少。复合纤维的一种组分为酸溶性聚合物,高浓度酸可使复合纤维有较大的开纤率,但纤维降解损失也大,使用酸性相对较弱的苯甲酸处理非织造布,可减少对纤维的损伤并达到开纤的目的[30]

2.1.4 其它化学溶剂开纤法

在海岛纤维的生产中,还有其它溶剂可去除海组分,日本东丽公司生产的PS/PET定岛型纤维,以PS为海组分,经三氯乙烯(C2HCl3)溶液溶解PS组分可得到PET超细纤维。Huang等[31]以PLA为海相将聚乙醇酸(PGA)与其共混,采用高速熔融纺丝法制备了乳酸聚(PLA)/PGA海岛纤维,在三氯甲烷(CHCl3)中溶解PLA相,可生产出具有高度取向的超细、均匀且排列良好的PGA纳米纤维。

在裂离型复合纤维中,利用溶胀剂对复合纤维中2种组分的溶胀率不同,使得双组分之间界面产生剪切内应力,当剪切内应力大于界面黏合力时,复合纤维可实现裂离。但在溶胀的过程中溶剂进入纤维的非结晶区,会对纤维的物理性能(如纤维强力、抗弯刚性等)产生一定程度的影响[32]。利用超声波对低浓度碱预处理过的裂离型复合纤维进行开纤,可协同表面活性剂促使碱液沿复合纤维双组分界面侵蚀,而裂离后超细纤维的位置在超声波的作用下发生改变,进而达到裂离的效果。该方法对纤维的损伤较小,且纤维裂离较彻底,但还未在工业生产中应用。

使用化学溶剂开纤时,减量工序中产生的甲苯废水或高浓度碱减量废水,在后续处理过程中难以达标,严重污染环境,且纤维在溶剂浸泡、溶解、开纤过程中,其结构及物理性能也会受到不同程度影响。目前,在对甲苯废水的处理过程中,利用多次蒸发浓缩及降膜蒸发的方式分离甲苯和聚乙烯,大大降低苯减量废水中有毒组分的含量,且提取得到的甲苯和PE可回收利用。但碱减量废水处理涉及高含量的有机物,如对苯二甲酸钠、乙二醇,废水中化学需氧量(COD)值高达20 000 mg/L以上,生化需氧量(BOD)与COD的比值小于0.2,理论上属于不可生物降解范畴[33]。碱减量废水处理方法中,酸析法简单易行,对废水中对苯二甲酸盐(TA)的去除率在70%~99%之间,COD的去除率在50%~90%之间,但需消耗大量H2SO4且成本高[34]。碱析法虽提高了对苯二甲酸的去除率,得到的对苯二甲酸钙粒径较大,沉淀性能较好,便于分离回收,但其处置费用较高,且最终回收的对苯二甲酸钙没有利用价值[35]。膜分离技术能选择性地去除污染物,尤其是采用超滤-纳滤组合膜分离技术处理废水,能很好地达到回收利用对苯二甲酸、降低废水COD的目的,但对于高浓度废水处理效果有限[36]。目前企业常采用上流式厌氧污泥床法(UASB)[37],该方法具有高效去除有机物的优点,处理高浓度有机废水效果显著,但存在处理时间长、构筑物容积大、TA难以回收等问题,且对于沉淀物一般采用焚烧的方法处理。随着碱减量废水处理技术的持续改进,废水处理的重心应转向资源化回收和再利用,而非简单的废水净化,资源化回收的联合处理工艺将成为未来碱减量废水处理技术的主要发展趋势。

2.2 水溶开纤法

化学溶剂开纤法污染严重,且对超细纤维有不同程度的损伤,因此开发WSP及TPVA用于复合纺丝,通过热水溶解其中一种组分制备超细纤维材料成为新的研究热点[38]

2.2.1 TPVA水溶开纤法

PVA具有水溶性、耐酸碱性、耐磨性和阻隔性等特点,在纺织领域有着广泛的应用[39]。然而,由于PVA的熔点与热分解温度十分接近,导致其热塑加工严重受限[40]。为实现PVA的热塑加工成形,需要降低熔点、提高热分解温度和改善热稳定性,从而扩大其熔融温度和热分解温度的差值。根据PVA的生产流程,热塑改性方法有以下2种:1)共聚改性和调控聚合度、醇解度,主要通过引入共聚单体、调控工艺参数等方法改善PVA热塑性[41];2)增塑改性或利用PVA侧链的仲羟基进行后反应改性,以达到热塑改性的目的[42]。通过对PVA的改性,可提升PVA的热塑加工性能,进一步扩展其应用领域。

日本东丽公司首次将PVA与PET/PA复合纺丝制备了定岛型复合纤维。在国内,天津工业大学钱晓明团队创新了适用于连续复合纺丝的热塑性聚乙烯醇多助剂协同增效增塑改性方法,分析了原料配比、醇解度和助剂等工艺条件对TPVA纺丝温度、水溶温度和水溶时间等的影响,突破了TPVA双组分纤维连续稳定纺丝,实现了高低温水溶开纤的TPVA/PA复合纤维的规模化制备,生产出TPVA/PA桔瓣型(16+16)复合纤维及TPVA/PA(19岛、37岛)定岛型复合纤维(见图4),研究了水溶温度及水溶时间对复合纤维开纤的影响规律,复合纤维在180 s左右达到完全开纤效果(见图5)。

图4

图4   TPVA/PA复合纤维微观形貌

Fig.4   Micro-morphology of TPVA/PA composite fiber.

(a) 32-petal segmented-pie fiber; (b) 16-island sea-island fiber; (c) 32-petal segmented-pie water-soluble split fiber; (d) 16-island sea-island fiber water-soluble split fiber


图5

图5   水溶时间和温度对复合纤维开纤的影响

Fig.5   Influence of water dissolution time and temperature on splitting of composite fiber


2.2.2 WSP水溶开纤法

WSP在化纤领域中作为溶离组分材料制备超细纤维,可减少环境污染[43]。在日本、欧美国家,WSP已在一些工业领域广泛应用。国内对WSP的研究起步较晚。聚酯的水性化通常是通过引入亲水基团实现,根据引入的亲水基团种类不同,可分为羧酸盐型和磺酸盐型二大类[44]。羧酸盐型WSP在制备过程中需进行胺中和,导致WSP的环保性和减毒特性降低[45],且还存在储存稳定性、水溶性差等问题。磺酸盐型WSP无需激烈搅拌和添加其它助剂即可快速溶于水中,具有更好的环境友好性、水溶性和储存稳定性,因此具有广阔的发展前景。

日本东丽公司将WSP与PET复合纺丝制备了16、36岛的海岛型复合纤维。上海华峰超纤材料股份有限公司合成出具有常温(50 ℃以内)下溶胀率低、高温(80~100 ℃)下易溶解的水溶性共聚酯,通过与PET或PA6复合纺丝制备了定岛型复合纤维,该纤维具有常温下不易粘连、在高温下能够快速溶解于水的特性[46]

尽管水溶性聚合物熔融纺丝具备一定的优势和潜力,但在当前工业生产中仍然面临一系列挑战。在熔融纺丝过程中,需要高度精密的生产设备来严格控制温度、湿度等参数,以确保纤维的质量和稳定性,不仅增加了生产成本,也提高了技术门槛。此外,水溶性聚合物纤维在接触水或湿度变化时可能会溶解或失去稳定性,从而影响其使用寿命和性能,因此,需要针对不同的应用场景进行纤维结构设计和处理,以提高其抗水溶性和稳定性,进而满足不同领域的需求。

2.3 机械开纤法

机械开纤主要针对于裂离型复合纤维生产超细纤维。裂离型复合纤维开裂的本质为2种组分间的界面结合力被打破。以桔瓣型复合纤维为例,当复合纤维受到弯曲、剪切、拉伸、扭转等的作用力F大于界面之间的黏附力fa时,纤维发生裂离形成超细纤维[46],其裂离机制如图6所示。目前,机械开纤方法主要以水刺法为主。

图6

图6   复合纤维裂离机制

Fig.6   Composite fiber splitting mechanism


2.3.1 水刺开纤法

采用水刺工艺使裂离型复合纤维原纤化,既可使产品具有很好的物理力学性能和手感,又能极大简化生产工序,可使超细纤维特有的优异性能充分发挥,最大程度地降低产品的处理成本[47]。裂离型纤维主要以桔瓣型为主。自1999年德国Freudenberg公司开发了双组分纺黏水刺非织造布,并命名为“Evolon”以来,在纤维细旦化与复合化的发展趋势下,双组分纺黏技术再一次成为非织造领域的关注热点。美国Hills公司、德国Reifenhauser公司、美国Ason公司、荷兰Akzo公司先后开发出双组分纺黏法非织造生产技术,但Freudenberg公司采用二步法制备的桔瓣型复合纤维为实心(见图7(a)),纤维开纤过程中,单个水刺头的水刺压力在30~45 MPa之间,能耗大,仍存在不易开纤、产品均匀性差的问题,且采用二步法制备的生产效率低[48]

图7

图7   桔瓣型复合纤维SEM照片

Fig.7   SEM images of segmented-pie composite fibers.

(a) "Evolon" microscopic morphology; (b) 8+8 hollow segmented-pie; (c) 16+16 hollow segmented-pie


针对上述问题,钱晓明团队联合大连华纶无纺设备工程有限公司和江西吉安三江超纤无纺有限公司,在美国Hills公司的配合下开发了一步法生产中空桔瓣型双组分纺黏水刺非织造材料生产技术,获得了较易开纤的中空桔瓣型(8+8)复合纤维,中空度为15%~25%,其SEM照片如图7(b)所示,水刺开纤压力可降低至30 MPa以下。此后,相继在河北廊坊中纺新元新材料有限公司、安徽金春无纺布股份有限公司、吉安市三江超纤无纺有限公司和山东齐鲁化纺有限公司建立了多条中空桔瓣型双组分纺黏水刺生产线,工艺流程如图8所示。

图8

图8   双组分纺黏水刺工艺流程图

Fig.8   Bicomponent spunbond spunlace process flow diagram


目前团队已开发出16+16中空桔瓣复合纤维(见图7(c)),但制备过程中高压水射流的冲击会使得桔瓣型复合纤维迅速裂离成楔型结构并紧密堆积,无相对滑移的空间,制备的非织造布纸感严重,且撕裂强力相对较低,严重影响了非织造布的性能。桔瓣型纤维实现高效开纤与柔性缠结是该技术发展的必然要求,降低纺丝聚合物间的界面作用力是关键所在。在熔融复合纺丝过程中各组分形成的结构与其本身分子性质及与之相匹配复合纺丝的聚合物的流变性和结晶性有关[49]。Ayad等[50]通过将不同熔点的PP与PA6进行复合纺丝发现,聚合物黏度是影响界面稳定性的关键因素。Schilde等[51]将PP/PET桔瓣型纺黏非织造布通过水刺、针刺等工艺开纤发现,聚合物的流变性和结晶性影响双组分之间的界面作用力,即双组分之间的黏附力和摩擦力。卜义华[52]通过研究不同结晶度PET、PA6的表面张力,得出表面张力差异大的聚合物复合纺丝制备的桔瓣型纤维更易裂离。

钱晓明团队[53]通过模拟聚合物分子链的规整度,探究其对溶解度参数以及两相间黏附强度的影响。研究表明:降低PET分子链规整度后,界面的吸附能从574.580 kJ/mol降低至341.807 kJ/mol;当增大两相间分子链规整度的差异时,两相间溶解度参数差异增大,这对纤维的裂离有着积极的作用。根据此模拟结果,选用PA6与低结晶度聚对苯二甲酸乙二醇酯(LDPET)进行配伍纺丝,可获得易裂离的双组分复合纤维。实验结果表明:在相同的水刺压力下,LDPET/PA6纤维的开纤率高于PET/PA6纤维;在相同的开纤率下,水刺的能耗可降低15%以上(开纤率约为75%)。因此,基于裂离型复合纤维(尤其是桔瓣型复合纤维)生产超细纤维的技术中,降低聚合物双组分间的界面黏附力,制备易开纤的桔瓣型复合纤维,实现高效开纤和柔性缠结相统一是未来研究的趋势。

2.3.2 机械搓揉开纤法

裂离型纤维也可利用针刺工艺加工,但在实际生产中通过针刺制备的非织造布开纤率较低,同时在生产过程中需要合理选择和设定刺针型号、针刺参数(如针刺深度、密度和频率),以减少对纤维的损伤及提高纤维的开纤程度。钱晓明团队通过研究中空桔瓣型复合纤维易开纤技术,可使中空桔瓣型复合纤维不经高压水刺,而是纺黏纤网经针刺固网后经机械搓揉获得开纤,可进一步降低开纤能耗,并实现了不同风格超细纤维非织造材料的制备,开纤前后非织造材料微观形貌如图9所示。

图9

图9   开纤前后非织造布微观形貌(×1 000)

Fig.9   Microscopic morphology of nonwoven fabrics before (a) and after (b) fiber splitting (×1 000)


2.3.3 其它物理开纤法

利用复合纤维双组分在相同温度下的热膨胀性及热收缩性不同在其界面产生剪切力可实现纤维裂离,包括干热处理和湿热处理。干热法开纤效果较差,且在高温作用下非织造布中的纤维易发生粘连,影响非织造布的物理性能。湿热法开纤效果优于干热法,针对桔瓣型超细纤维非织造布开纤率低、柔软度差的问题,以高收缩聚对苯二甲酸乙二醇酯(HSPET)、PA6为原料,通过双组分纺黏水刺技术制备了HSPET/PA6超细纤维非织造布,研究表明,热收缩可促进纤维裂离,改善非织造布的柔软度及悬垂性[54]。同时,通过复合纤维轴向拉伸可实现纤维的裂离。然而,拉伸力过小,纤维双组分之间产生的剪切力小于2种聚合物界面的黏附力,纤维无法裂离;拉伸力过大,会损伤纤维,导致其力学性能下降[55]

通过共轭纺丝法制备的裂离型纤维经物理开纤得到的超细纤维可避免在开纤过程中产生减量废水及纤维质量损失,对于清洁生产超细纤维非织造布具有很大优势。

3 熔融双组分超细纤维的应用

熔融双组分超细纤维具有纤维强度高、线密度小、抗弯刚度低、比表面积大、吸附性强等特点,广泛应用于生活生产的各个领域。

3.1 超细纤维合成革制备领域

以超细纤维制成的具有三维网络结构的非织造布作为基材,与具有开孔结构的聚氨酯(PU)弹性体复合制备的超细纤维合成革(简称超纤革),真正模拟了天然皮革的形态,是天然皮革的理想代替产品[56]。目前,超纤革基布主要采用海岛短纤针刺非织造布为基材与PU复合的制革加工工艺生产,同时对纤维改性及超细纤维非织造布结构设计,可改善超纤革的力学性能和热湿舒适性。赵宝宝等[57]以WPU膜为聚合物涂层,以PET/PA6熔纺双组分桔瓣型非织造材料为基层材料,成功实现了超纤革的全流程绿色清洁化生产。

3.2 过滤与分离领域

超细纤维在空气过滤器中应用,具有过滤效率高、容尘量大、使用寿命长、节约成本等优点,可有效过滤空气中的微粒和污染物。田新娇等[58]研究表明,海岛超细纤维非织造材料对PM2.5的过滤效率可达94.9%;Duo等[53]通过对不同开纤率的PET/PA6桔瓣型超细纤维非织造材料研究表明,高开纤率的非织造材料对于粒径为1.5 μm颗粒的过滤效率接近于100%。在水处理中,通过对超细纤维材料的涂层或复合改性,可去除水中的杂质和微生物,提高水质。同时,超细纤维被应用于吸油毡和油水分离膜,用于处理油污染和油水混合物[59]

3.3 医用防护领域

利用超细纤维网络具有的结构致密、孔隙形态可控性强的特征,相较于其它医疗卫生用材料,熔融纺超细纤维具有显著的优势[60],其具有更大的比表面积和更细的纤维形态,由其制备的非织造材料具有密集的纤维结构和孔隙,因此应用于口罩及防护服中的超细纤维层可阻挡病毒、细菌和颗粒物,进一步通过功能整理或复合技术制备的医用防护材料在防护隔离方面表现优异。安琪等[61]基于PET/PA6超细纤维非织造材料,采用浸渍涂层及热黏合工艺制备了具有疏水、高耐静水压、抗污、抗血液渗透的高强医用防护材料。

3.4 卫生健康领域

致密的纤维结构、柔软的质地以及优异的吸水性等特点使得超细纤维材料在防螨床品、服装等领域有着广泛的应用前景。除此之外,其出色的吸水、吸尘和吸油性能以及优异的耐磨性,使之成为理想的擦拭材料,并通过特定的生产工艺赋予擦拭材料更多的功能性,用于家庭清洁、车辆护理和工业清洁等领域[62]。如由桔瓣型双组分纺黏水刺超细纤维材料制备的面膜,其结构紧密、柔软细腻,微纳米级别的纤维可保障高效吸收大量水分,由其制备的高精密擦拭材料具有不起毛、结实、力学稳定性强等特点,有卓越的无痕清洁性能,可吸收比自身质量分别高4倍的水和8倍的油。

4 结束语

通过复合纺丝技术生产超细纤维材料是批量生产高强超细纤维材料最有效的技术手段之一,具有高速、高效、高产的特点。随着碳中和与节能减排等绿色环保概念的提出,开发低能耗、无化学试剂和高效绿色开纤的方式,从而实现超细纤维的制备是熔融纺超细纤维发展的趋势。

在双组分纤维的原纤化过程中,通过化学溶剂开纤对环境污染严重,且纤维结构及物理性能也会受到不同程度的影响。开发水溶性聚合物应用于熔融复合纺丝是生产超细纤维的发展方向之一。目前,开发水溶性聚酯或热塑性聚乙烯醇用于熔融复合纺丝,制备海岛型复合纤维或裂离型复合纤维,通过热水溶解其中一种组分制备超细纤维材料已成为新的研究热点。进一步,可选用生物可降解聚合物作为超细纤维生产的原料。

采用共轭纺丝技术生产裂离型复合纤维的过程中,降低双组分间的界面黏附力是其发展的关键,应深入研究纺丝过程中聚合物分子链大小、极性强弱、聚合物结晶速率等对双组分界面作用力的影响,制备极易裂离的桔瓣型复合纤维。特别是在双组分纺黏水刺技术中,实现桔瓣型复合纤维的高效开纤与柔性缠结,可极大地拓展其应用领域。

纤维的进一步细化也是发展方向之一,目前定岛型复合纤维以16、19、37、64岛为主,最大可生产300岛复合纤维,桔瓣型复合纤维以8+8、16+16桔瓣型复合纤维为主,应进行精密组件的研发、成形工艺的优化调控,生产多岛数(>500)定岛纤维及多瓣数(如32+32)桔瓣型复合纤维。

同时,随着非织造技术的不断发展及多学科交叉理念的提倡,未来复合纤维有望通过成形技术实现纤维形态的进一步细化,通过更多先进的后整理技术实现功能化,通过原料和工艺结合实现产品的绿色化。

参考文献

HOEHNEMANN T, SCHNEBELE Y, WANG X, et al.

Nanoval technology:an intermediate process between meltblown and spunbond

[J]. Materials, 2023, 7(16): 2932.

[本文引用: 2]

XIA L, XI P, CHENG B.

High efficiency fabrication of ultrahigh molecular weight polyethylene submicron filaments/sheets by flash-spinning

[J]. Journal of Polymer Engineering, 2016, 36(1): 97-102.

[本文引用: 2]

WANG J J, WANG X Y, ZHONG D C, et al.

Nanofibrous membranes modified by zwitterionic polyelectrolyte brushes for effective adsorption of ciprofloxacin hydrochloride

[J]. Applied Surface Science, 2024. DOI:10.1016/j.apsusc.2024.159760.

[本文引用: 2]

PERSSON M, LORITE G S, CHO S W, et al.

Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties

[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6864-6872.

[本文引用: 2]

KIM H C, KIM D, LEE J Y, et al.

Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber filament

[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(3): 567-575.

[本文引用: 2]

AGO M, BORGHEI M, HAATAJA J S, et al.

Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes

[J]. RSC Advances, 2016, 6(89): 85802-85810.

[本文引用: 2]

ZHENG Z, CHEN P, XIE M, et al.

Cell environment-differentiated self-assembly of nanofibers

[J]. Journal of the American Chemical Society, 2016, 138(35): 11128-11131.

DOI:10.1021/jacs.6b06903      PMID:27532322      [本文引用: 2]

Employing cellular environment for the self-assembly of supramolecular nanofibers for biological applications has been widely explored. But using one precursor to differentiate the extra- and intracellular environments to self-assemble into two different nanofibers remains challenging. With the knowledge that the extracellualr environment of some cancer cells contains large amounts of alkaline phosphatase (ALP) while their intracellular environment is glutathione (GSH)-abundant in mind, we rationally designed a precursor Cys(SEt)-Glu-Tyr(H2PO3)-Phe-Phe-Gly-CBT (1) that can efficiently yield amphiphilic 2 and 2-D to self-assemble into two different nanofibers in hydrogels under the sequential treatment of ALP and GSH. We envision that, by employing a click condensation reaction, this work offers a platform for facilely postmodulation of supramolecular nanofibers, and the versatile precursor 1 could be used to kill two birds with one stone.

LEÓN-BOIGUES L, NAVARRO R, MIJANGOS C.

Free radical nanocopolymerization in AAO porous materials: kinetic, copolymer composition and monomer reactivity ratios

[J]. Polymer, 2021. DOI:10.1016/j.polymer.2021.123989.

[本文引用: 2]

ZHANG S M, MENG C Z, WU Y H, et al.

Efficient production of copolymerized PA6-based polymer fibers: oligomer control and direct melt spinning

[J]. Polymer, 2024. DOI:10.1016/j.polymer.2024.126762.

[本文引用: 2]

CUI L, ZHANG N, CUI W, et al.

A novel nano/micro-fibrous scaffold by melt-spinning method for bone tissue engineering

[J]. Journal of Bionic Engineering, 2015, 12(1): 117-128.

[本文引用: 1]

HE H, CHEN L, ZHANG Y, et al.

Studies on melt spinning of sea-island fibers: I: morphology evolution of polypropylene/polystyrene blend fibers

[J]. Fibers and Polymers, 2014, 15(9): 1941-1949.

[本文引用: 2]

CHEN L, HE H, ZHANG Y, et al.

Studies on melt spinning of sea-island fibers: II: Dynamics of melt spinning of polypropylene/polystyrene blend fibers

[J]. Fibers and Polymers, 2015, 16(2): 449-462.

[本文引用: 2]

GUO C C, ZHU J T, WU P F, et al.

Degradable side-by-side fiber of poly(butylene succinate-co-terephthalate)/poly(L-lactic acid) with half-wrinkled surfaces and fully crimped structures

[J]. Materials Letters, 2024. DOI:10.1016/j.matlet.2024.136085.

[本文引用: 1]

ZHANG X, JIN G, MA W, et al.

Fabrication and properties of poly(L-lactide) nanofibers via blend sea-island melt spinning

[J]. Journal of Applied Polymer Science, 2015, 132(1): 357-384.

[本文引用: 1]

FU H, ZHANG T, ZHANG S, et al.

Current advances on sea-island microfiber nonwoven materials preparation technology and its applications: a review

[J]. Journal of The Textile Institute, 2023, 115: 1-11.

[本文引用: 1]

ZHANG Z, TU W, PEIJS T, et al.

Fabrication and properties of poly(tetrafluoroethylene) nanofibres via sea-island spinning

[J]. Polymer, 2017, 109: 321-331.

[本文引用: 1]

SUGAWARA K, IKAGA T, KIM K H, et al.

Fiber structure development in PS/PET sea-island conjugated fiber during continuous laser drawing

[J]. Polymer, 2015, 79: 37-46.

[本文引用: 1]

YASOSHIMA R, TAJIMA T, YAMAGUCHI H, et al.

Nanofiber and nanofiber powder of syndiotactic polystyrene fabricated by laser-heated drawing of sea-island-type conjugated-spun fiber

[J]. Journal of Fiber Science and Technology, 2018, 74(8): 186-195.

[本文引用: 1]

AN H J, CHOI Y C, OH H J, et al.

Structure development in high-speed melt spinning of high-molecular weight poly(ethylene terephthalate)/polypropylene islands-in-the-sea bicomponent fibers

[J]. Polymer, 2022. DOI:10.1016/j.polymer.2021.124365.

[本文引用: 1]

BAUTISTA J R, BRUENIG H, POETSCHKE P, et al.

Improved sensitivity of liquid sensing melt-spun polymer fibers filled with carbon nanoparticles by considering solvent-polymer solubility parameters

[J]. Materials Research Express, 2024. DOI:10.1088/2053-1591/acd7c4.

[本文引用: 1]

ZHAO B B, HAN X, HU C G, et al.

Hydrophilic modification of polyester/polyamide 6 hollow segmented pie microfiber nonwovens by UV/TiO2/H2O2

[J]. Molecules, 2023, 9(23): 3826.

[本文引用: 1]

屠海燕, 李建邺, 黄华福, .

PET/PBT双十字形复合纤维纺丝组件及喷丝板设计

[J]. 纺织报告, 2022, 41(11): 1-3.

[本文引用: 1]

TU Haiyan, LI Janye, HUANG Huafu, et al.

PET/PBT double cross shaped composite fiber spinning module and spinneret plate design

[J]. Textile Report, 2022, 41(11): 1-3.

[本文引用: 1]

IIMURO H.

Business development of polyester nano fiber (NanofrontTM)

[C]// Proceedings of International Nanofiber Symposium 2009. Japan:[s.n.], 2009: 16-18.

[本文引用: 1]

HOLLOWELL K B, ANANTHARAMAIAH N, POURDEYHIMI B.

Hybrid mixed media nonwovens composed of macrofibers and microfibers. part I: three-layer segmented pie configuration

[J]. Journal of The Textile Institute, 2013, 104(9): 972-979.

[本文引用: 1]

SHANG M Y, GAO Z Y, CHENG H L, et al.

Relationship between microstructure evolution and properties enhancement of carbon nanotubes-filled polybutylene terephthalate/polypropylene blends induced by thermal annealing

[J]. Journal of Applied Polymer Science, 2022, 139(8): 51689.

[本文引用: 1]

TSAMPANAKIS I, WHITE O A.

The mechanics of forming ideal polymer-solvent combinations for open-loop chemical recycling of solvents and plastics

[J]. Polymers, 2021, 14(1): 1-20.

[本文引用: 1]

XU N, TAO Y N, WANG X C, et al.

Construction of a novel substrate of unfigured islands-in-sea microfiber synthetic leather based on waste collagen

[J]. ACS Omega, 2021, 6(40): 26086-26097.

DOI:10.1021/acsomega.1c03061      PMID:34660969      [本文引用: 1]

This study is to introduce waste collagen into an unfigured islands-in-sea microfiber nonwoven material, replacing the polyurethane impregnation section of the traditional manufacturing process with the collagen impregnation process. The modified collagen was first impregnated in polyamide/low-density polyethylene (PA/LDPE) fiber nonwoven to form a film. Then the low-density polyethylene component was extracted and dissolved in toluene, resulting in a collagen-based microfiber nonwoven substrate. Waste collagen was first modified to introduce C=C into the molecular chain to obtain vinyl collagen (CMA), and then the following film formation conditions for CMA were studied: 73% degree of substitution (DS), 3 h cross-linking time, and 0.005-0.01 wt % initiator concentration. Then, the preparation of CMA-PA/LDPE and toluene extraction processes were investigated. The optimum toluene extraction conditions were obtained as an extraction temperature of 85 °C and an extraction time of 110 min. The properties of the nonwoven materials were compared before (CMA-PA/LDPE) and after (PA-CMA) extraction. It was found that the homogeneity, tensile strength, and static moisture permeability of the PA-CMA materials prepared by CMA with 50 and 73% DS were all superior to those of PA/LDPE. In particular, the static moisture permeability of PA-CMA (691.6 mg/10 cm·24 h) increased by 36.2% compared to the microfiber synthetic leather substrate currently in the market. Using scanning electron microscopy (SEM), the continuity of a film of PA-CMA with 73% DS was observed to be better and the fibers were differentiated and relatively tighter fiber-to-fiber gap. The studied novel green process can eliminate the large amount of dimethylformamide (DMF) pollution caused by the current solvent-based polyurethane impregnation process.© 2021 The Authors. Published by American Chemical Society.

KANG J M, KIM M G, LEE J E, et al.

Alkaline hydrolysis and dyeing characteristics of sea-island-type ultraultra-fine fibers of PET tricot fabrics with black disperse dye

[J]. Polymers, 2020, 12(6): 1-14.

[本文引用: 1]

卢志敏. PET/PA6桔瓣型双组分纺粘法非织造材料的开纤工艺与产品开发[D]. 天津: 天津工业大学, 2012: 3-20.

[本文引用: 1]

LU Zhimin. PET/PA6 segmented pie spunbond nonwoven with split-fiber process and product development[D]. Tianjin: Tiangong University, 2012: 3-20.

[本文引用: 1]

LIU Y. Investigation of fiber splitting in side-by-side bicomponent meltblown nonwoven webs through post treatment[M]. USA: The University of Tennessee, 2004: 10-15.

[本文引用: 1]

HUANG W, HUANG X X, WANG P, et al.

Poly (glycolic acid) nanofibers via sea-island melt-spinning

[J]. Macromolecular Materials and Engineering, 2018. DOI:10.1002/mame.201800425.

[本文引用: 1]

刘若冰, 朱谱新.

溶剂法裂离桔瓣型PET/PA6复合纤维

[J]. 纺织学报, 1997, 18(4): 18-20.

[本文引用: 1]

LIU Ruobing, ZHU Puxin.

Solvent cleavage of orange-flap PET/PA6 composite fibers

[J]. Journal of Textile Research, 1997, 18(4): 18-20.

[本文引用: 1]

JUNAID M, MALIK R N, PEI D S.

Health hazards of child labor in the leather products and surgical instrument manufacturing industries of Sialkot, Pakistan

[J]. Environmental Pollution, 2017, 226: 198.

DOI:S0269-7491(16)32521-0      PMID:28432963      [本文引用: 1]

Child labor is a major challenge in the developing countries and comprehensive health hazard identification studies on this issue are still lacking. Therefore, the current study is an effort to highlight the health concerns of child labor exposed in the key small scale industries of Sialkot, Pakistan. Our findings revealed jolting levels of heavy metals in the urine, blood, serum, saliva, and hair samples collected from the exposed children. For example, in the urine samples, Cd, Cr, Ni, and Pb were measured at the respective concentrations of 39.17, 62.02, 11.94 and 10.53 μg/L in the surgical industries, and 2.10, 4.41, 1.04 and 5.35 μg/L in the leather industries. In addition, source apportionment revealed polishing, cutting, and welding sections in the surgical industries and surface coating, crusting, and stitching sections in the leather industries were the highest contributors of heavy metals in the bio-matrices of the exposed children, implying the dusty, unhygienic, and unhealthy indoor working conditions. Further, among all the bio-matrices, the hair samples expressed the highest bioaccumulation factor for heavy metals. In accordance with the heavy metal levels reported in the exposed children, higher oxidative stress was found in the children working in the surgical industries than those from the leather industries. Moreover, among heavy metals' exposure pathways, inhalation of industrial dust was identified as the primary route of exposure followed by the ingestion and dermal contact. Consequently, chemical daily intake (CDI), carcinogenic and non-carcinogenic hazard quotients (HQs) of heavy metals were also reported higher in the exposed children and were also alarmingly higher than the corresponding US EPA threshold limits. Taken all together, children were facing serious health implications in these industries and need immediate protective measures to remediate the current situation.Copyright © 2017 Elsevier Ltd. All rights reserved.

ZHANG X, JIN G, MA W, et al.

Fabrication and properties of poly (L-lactide) nanofibers via blend sea-island melt spinning

[J]. Journal of Applied Polymer Science, 2015. DOI:10.1002/app.41228.

[本文引用: 1]

YANG F, ZHANG S S, CHENG K, et al.

A hydrothermal process to turn waste biomass into artificial fulvic and hu mic acids for soil remediation

[J]. Science of the Total Environment, 2019, 686: 1140-1151.

[本文引用: 1]

YAN M H, WANG J, SU X Y, et al.

A 3D paddle-wheel type Cu(II)-based MOF with pcu topology as an efficient photocatalyst for antibiotics photodegradation

[J]. New Journal of Chemistry, 2023, 23(47): 11134-11142.

[本文引用: 1]

MAL J, NANCHARAIAH Y V, MAHESHWARI N, et al.

Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor

[J]. Journal of Hazardous Materials, 2017, 327: 79-88.

DOI:S0304-3894(16)31193-1      PMID:28043045      [本文引用: 1]

Continuous removal of tellurite (TeO) from synthetic wastewater and subsequent recovery in the form of elemental tellurium was studied in an upflow anaerobic granular sludge bed (UASB) reactor operated at 30°C. The UASB reactor was inoculated with anaerobic granular sludge and fed with lactate as carbon source and electron donor at an organic loading rate of 0.6g CODLd. After establishing efficient and stable COD removal, the reactor was fed with 10mg TeOL for 42 d before increasing the influent concentration to 20mg TeOL. Tellurite removal (98 and 92%, respectively, from 10 and 20mg TeL) was primarily mediated through bioreduction and most of the removed Te was retained in the bioreactor. Characterization using XRD, Raman spectroscopy, SEM-EDX and TEM confirmed association of tellurium with the granular sludge, typically in the form of elemental Te(0) deposits. Furthermore, application of an extracellular polymeric substances (EPS) extraction method to the tellurite reducing sludge recovered up to 78% of the tellurium retained in the granular sludge. This study demonstrates for the first time the application of a UASB reactor for continuous tellurite removal from tellurite-containing wastewater coupled to elemental Te(0) recovery.Copyright © 2016 Elsevier B.V. All rights reserved.

LI M L, JIN E Q, LIAN Y Y.

Effects of molecular structure of aliphatic dicarboxylic ester on the properties of water-soluble polyester for warp sizing

[J]. Journal of The Textile Institute, 2016, 12(107): 1490-1500.

[本文引用: 1]

GUO D, WANG Q, BAI S B.

Poly(vinyl alcohol)/melamine phosphate composites prepared through thermal processing: thermal stability and flame retardancy

[J]. Polymers for Advanced Technologies, 2013, 24(3): 339-347.

[本文引用: 1]

LIU H L, CHEN R L, SUN X Y, et al.

Preparation and properties of PBAT/PLA composites modified by PVA and cellulose nanocrystals

[J]. Journal of Applied Polymer Science, 2022. DOI:10.1002/app.51474.

[本文引用: 1]

JAVANBAKHT T, DAVID E.

Rheological and physical properties of a nanocomposite of graphene oxide nanoribbons with polyvinyl alcohol

[J]. Journal of Thermoplastic Composite Materials, 2022, 35(5): 651-664.

[本文引用: 1]

LIU Q, CHEN N, BAI S B, et al.

Effect of silver nitrate on the thermal processability of poly(vinyl alcohol) modified by water

[J]. RSC Advances, 2018, 8(5): 2804-2810.

[本文引用: 1]

ZHANG X, LIU L, WENG L.

Preparation of water-soluble electrical steel coating with SiO2 modified by glycine

[J]. Polymer Composites, 2018, 39(4): 229-239.

[本文引用: 1]

马清芳, 程贞娟, 秦伟明, .

水溶性聚酯的制备及其性能

[J]. 纺织学报, 2007, 28(6): 20-22,27.

[本文引用: 1]

MA Qingfang, CHENG Zhenjuan, QIN Weiming, et al.

Preparation and characterization of water-soluble polyester

[J]. Journal of Textile Research, 2007, 28(6): 20-22,27.

[本文引用: 1]

<FONT face=Verdana>Water-soluble polyester(WSP) was prepared by adding modifying monomer with sulfonic group through copolymerization.And the WSP was characterized by FTIR、DSC and X-ray.The effects of modifying monomer on WSP′s water-solubility and crystallization and thermal property were studied.And the results show that the existence of SO in the molecular chain is confirmed by FTIR,thus proving that SIPE has participated in the copolymerization;and increasing modifying monomer improves the water-solubility of polyester effectively,but it is disadvantageous to its crystallization.</FONT>

齐庆莹, 陈文兴, 秦伟明, .

水溶性聚酯的流变行为

[J]. 纺织学报, 2008, 29(8): 11-14.

[本文引用: 1]

QI Qingying, CHEN Wenxing, QIN Weiming, et al.

Rheological behavior of water-soluble polyesters

[J]. Journal of Textile Research, 2008, 29(8): 11-14.

[本文引用: 1]

<FONT face=Verdana>The water-soluble polyester(WSP) was synthesized from PTA,EG and SIPE by copolycondensation.The rheological behavior of self-produced WSP was studied with Rosand RH7 capillary rheometer.The results show that the shear viscosity of WSP declines and the non-Newton index increases with rising of the temperature.Under the same conditions,the shear viscosity of WSP is higher than that of PET.The shear viscosity of WSP is more sensitive to shear rate than PET.The viscoflow activation energy declines with increase of shear rate.The influence of the third monomer SIPE and temperature on rheological behavior was also investigated.</FONT>

赵宝宝, 钱幺, 钱晓明, .

梯度结构双组分纺粘水刺非织造材料的制备及其性能

[J]. 纺织学报, 2018, 39(5): 56-61.

[本文引用: 2]

ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al.

Preparation and properties of bicomponent spunbond-spunlance nonwoven materials with gradient struc-ture

[J]. Journal of Textile Research, 2018, 39(5): 56-61.

[本文引用: 2]

王敏. PET/PA6双组份纺粘水刺非织造材料工艺及其性能的研究[D]. 杭州: 浙江理工大学, 2016: 2-6.

[本文引用: 1]

WANG Min. Research on the process and properties of PET/PA6 bicomponent spunbond-spunlace nonwoven material[D]. Hangzhou: Zhejiang University of Technology, 2016: 2-6.

[本文引用: 1]

张恒. 纺粘管式牵伸机理及PET/PA6双组份非织造材料的研究[D]. 天津: 天津工业大学, 2015: 11-16.

[本文引用: 1]

ZHANG Heng. Research on spunbond tubular drafting mechanism and PET/PA6 two-component nonwoven materials[D]. Tianjin: Tiangong University, 2015: 11-16.

[本文引用: 1]

PRAHSARN C, KLINSUKHON W, PADEE S, et al.

Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability

[J]. Journal of Materials Science, 2016, 51(24): 10910-10916.

[本文引用: 1]

AYAD E, CAYLA A, RAULT F, et al.

Effect of viscosity ratio of two immiscible polymers on morphology in bicomponent melt spinning fibers

[J]. Advances in Polymer Technology, 2018, 37(4): 1134-1141.

[本文引用: 1]

SCHILDE W, ERTH H, HEYE U.

Spunbond nonwovens made from splittable bi-component filaments

[J]. Chemical Fibers International, 2007, 57(1): 61-64.

[本文引用: 1]

卜义华. PET/PA6中空桔瓣型纺粘复合纤维的制备及其开纤研究[D]. 天津: 天津工业大学, 2012: 26-35.

[本文引用: 1]

BU Yihua. Preparation of PET/PA6 hollow orange petal spunbond composite fiber and its open fiber research[D]. Tianjin: Tiangong University, 2012: 26-35.

[本文引用: 1]

DUO Y C, QIAN X M, ZHAO B B, et al.

Easily splittable hollow segmented-pie microfiber nonwoven material with excellent filtration and thermal-wet comfort for energy savings

[J]. Journal of Materials Research and Technology, 2022, 17: 876-887.

[本文引用: 2]

DUO Y C, QIAN X M, ZHAO B B, et al.

Preparation and properties of a fluffy HSPET/PA6 hollow segmented pie microfiber nonwovens

[J]. Textile Research Journal, 2022, 92(17/18): 3221-3233.

[本文引用: 1]

钱雯瑾. 分裂型纤维水刺缠结工艺及裂离机理研究[D]. 上海: 东华大学, 2011: 3-10.

[本文引用: 1]

QIAN Wenjin. Study on split-fiber spunlace process and splitting theory[D]. Shanghai: Donghua University, 2011: 3-10.

[本文引用: 1]

朵永超, 钱晓明, 赵宝宝, .

超细纤维合成革基布的制备及其性能

[J]. 纺织学报, 2020, 41(9): 81-87.

[本文引用: 1]

DUO Yongchao, QIAN Xiaoming, ZHAO Baoao, et al.

Preparation and properties of microfiber synthetic leather base

[J]. Journal of Textile Research, 2020, 41(9): 81-87.

[本文引用: 1]

赵宝宝, 钱幺, 刘凡, .

中空桔瓣型超细纤维/水性聚氨酯合成革的制备及性能

[J]. 复合材料学报, 2017, 34(11): 2392-2400.

[本文引用: 1]

ZHAO Baobao, QIAN Yao, LIU Fan, et al.

Preparation and properties of hollow segmented-pie microfiber/waterborne polyurethane synthetic lea-ther

[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2392-2400.

[本文引用: 1]

田新娇, 柳静献, 毛宁, .

基于海岛纤维的新型滤料实验研究

[J]. 东北大学学报(自然科学版), 2017, 38(8): 1163-1166.

DOI:10.12068/j.issn.1005-3026.2017.08.021      [本文引用: 1]

研发基于超细纤维的滤料是控制PM2.5的主要技术方向之一.采用国家标准建议的实验装置,对新型超细海岛纤维滤料的过滤性能进行综合研究,得出了滤料的过滤效率、残余阻力、清灰周期等参数,并与常规针刺毡滤料和覆膜滤料对比.结果表明:海岛纤维滤料对PM2.5的计数效率为94.9%,远高于常规针刺毡滤料,与覆膜滤料相当;动态过滤过程的残余阻力低于覆膜滤料,残余阻力上升缓慢,清灰周期更长,有利于延长滤料的寿命,节约成本.

TIAN Xinjiao, LIU Jingxian, MAO Ning, et al.

Experimental study on the new filter made from sea-islandfibers

[J]. Journal of Northeastern University (Natural Science), 2017, 38(8): 1163-1166.

[本文引用: 1]

YANG Y, YE L, KUNLI G, et al.

Dopamine intercalated polyelectrolyte multilayered nanofiltration membranes toward high permselectivity and ion-ion selectivity

[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2022.120337.

[本文引用: 1]

ZHANG H, CAO Y, ZHEN Q, et al.

Facile preparation of PET/PA6 bicomponent microfilament fabrics with tunable porosity for comfortable medical protective clothing

[J]. ACS Applied Bio Materials, 2022, 5(7): 3509-3518.

DOI:10.1021/acsabm.2c00447      PMID:35793521      [本文引用: 1]

Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.

安琪, 付译鋆, 张瑜, .

医用防护服用非织造材料的研究进展

[J]. 纺织学报, 2020, 41(8): 188-196.

[本文引用: 1]

AN Qi, FU Yijun, ZHANG Yu, et al.

Research progress of nonwovens for medical protective gar-ment

[J]. Journal of Textile Research, 2020, 41(8): 188-196.

[本文引用: 1]

杨旭红.

非织造擦拭巾的研究进展

[J]. 南通大学学报(自然科学版), 2022, 21(3): 1-13.

[本文引用: 1]

YANG Xuhong.

Research development of nonwoven wipes

[J]. Journal of Nantong University (Natural Science Edition), 2022, 21(3): 1-13.

[本文引用: 1]

/