纺织学报, 2024, 45(08): 65-71 doi: 10.13475/j.fzxb.20240304602

纺织科技新见解学术沙龙专栏:先进非织造品与技术

聚四氟乙烯膜的超疏水改性及应用研究进展

李成才1,2, 朱登辉1, 朱海霖1,2, 郭玉海,1

1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018

2.现代纺织技术创新中心(鉴湖实验室), 浙江 绍兴 312030

Research progress of superhydrophobic modification and application of polytetrafluoroethylene membrane

LI Chengcai1,2, ZHU Denghui1, ZHU Hailin1,2, GUO Yuhai,1

1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 300318, China

2. Innovation Center of Advanced Textile Technology (Jianhu Laboratory), Shaoxing, Zhejiang 312030, China

通讯作者: 郭玉海(1973—),男,研究员,博士。主要研究方向为高分子材料。E-mail:gyh@zstu.edu.cn

收稿日期: 2024-03-19   修回日期: 2024-05-10  

基金资助: 国家自然科学基金青年科学基金资助项目(52303160)

Received: 2024-03-19   Revised: 2024-05-10  

作者简介 About authors

李成才(1990—),男,讲师,博士。主要研究方向为高分子分离膜材料制备。

摘要

超疏水聚四氟乙烯膜材料具有突出的化学稳定性、高耐热性、强疏水性和高断裂韧性等优点,在膜分离技术领域中广泛应用。为开发高效、低成本、耐久稳定、绿色环保的超疏水改性技术,根据聚四氟乙烯膜的超疏水改性原理,从聚四氟乙烯分子化学结构出发,分析了2种改性机制“不改变聚四氟乙烯的化学结构”和“改变聚四氟乙烯的化学结构”,介绍了超疏水聚四氟乙烯膜材料制备和改性中的优缺点,阐述了超疏水聚四氟乙烯膜材料的功能性应用形式和领域,最后探讨了超疏水聚四氟乙烯膜材料目前存在的问题及未来发展的方向,以期为高性能超疏水聚四氟乙烯膜材料的进一步研究提供参考。

关键词: 分离膜材料; 聚四氟乙烯膜; 超疏水; 改性方法; 分离技术

Abstract

Significance Surfaces with special wetting behavior, especially superhydrophobic surfaces with high water contact angles greater than 150° and low slide angles less than 10°, have attracted attention because they can be used in a variety of applications requiring special surface properties, such as anti-corrosion, self-cleaning, and drag reduction. Polyterafluoroethylene(PTFE) is a good material for preparing superhydrophobic membranes because of its good thermal stability, chemical resistance, low surface energy and low thermal conductivity. However, the surface of the membrane material prepared by PTFE resin cannot meet the requirements of superhydrophobic, so the superhydrophobic modification becomes the focus of research.

Progress In this paper, the preparation, modification and application of PTFE membranes were reviewed. The advantages and disadvantages of different processes for the preparation and modification of superhydrophobic PTFE membrane were summarized. According to the superhydrophobic modification principle of PTFE membrane and the molecular chemical structure of PTFE, two modification mechanisms of "not changing the molecular structure of PTFE" and "changing the molecular structure of PTFE" were analyzed. Based on practical cases, the early modification methods such as laser etching, ion irradiation and plasma etching are introduced one by one, and their shortcomings are analyzed. The super hydrophobic modification of PTFE further reduces the surface energy of the membrane, which can solve the problems of easy contamination, poor selective permeability and short service life. Finally, the application of super hydrophobic PTFE membrane in oil-water separation, membrane distillation, printing and dyeing wastewater treatment is introduced.

Conclusion and Prospect The preparation technology of superhydrophobic PTFE membrane was summarized into two types: "no change in the chemical structure of PTFE" and "change in the chemical structure of PTFE". The first method is relatively simple and economical, but because most of the bonding methods are physical bonding, its bonding strength is low, the superhydrophobicity cannot be maintained over time, and it is prone to secondary pollution. The second method is fast, easy to control the surface structure, and has good hydrophobicity retention, but the molecular structure of PTFE is destroyed, which will adversely affect the mechanical strength and chemical stability of the membrane. Subsequent development should be carried out from the following aspects. 1) The selection of environmentally friendly nanoparticles and the enhancement of partical bonding strength and uniformity should be extensively explored. Nanoparticles should be combined with the industrial production process of PTFE membrane, and the process of dual-directional stretching to prepare PTFE membrane should be added to form a superhydrophobic PTFE membrane in one step. 2) A mild and efficient surface construction method, which can reduce the damage to the PTFE membrane substrate as much as possible while obtaining super hydrophobicity should be developed to achieve the coexistence of functional performance and strength. 3) The density ratio between the crystalline state and the amorphous state of PTFE should be controlled during membrane making, and the surface energy of PTFE should be reduced by increasing the amorphous state density, so as to directly realize the super hydrophobic of PTFE membrane.

Keywords: separation membrane material; polytetrafluoroethylene membrane; superhydrophobic; modification method; separation technique

PDF (2496KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李成才, 朱登辉, 朱海霖, 郭玉海. 聚四氟乙烯膜的超疏水改性及应用研究进展[J]. 纺织学报, 2024, 45(08): 65-71 doi:10.13475/j.fzxb.20240304602

LI Chengcai, ZHU Denghui, ZHU Hailin, GUO Yuhai. Research progress of superhydrophobic modification and application of polytetrafluoroethylene membrane[J]. Journal of Textile Research, 2024, 45(08): 65-71 doi:10.13475/j.fzxb.20240304602

具有特殊润湿行为的表面,特别是具有大于150°的高水接触角和低于10°的低滑动角的超疏水表面[1],可用于各种需要特殊表面特性的领域,如防腐[2],自清洁[3]和减阻[4]。自人类在大自然中发现“荷叶效应”等超疏水现象以来,超疏水材料的研究就一直受到研究者的广泛关注。“荷叶效应”启示研究者可从降低材料表面能和构建微纳粗糙结构2方面制备超疏水膜。随着有机膜在工业过程中应用越来越广泛[5],为提高有机膜的性能和应用范围,赋予有机膜超疏水性已成为新的研究热点。

聚四氟乙烯(PTFE)由于其本体聚乙烯结构中的所有C—H键全部被取代为C—F键,且氟原子半径大于氢原子、电负性更大,导致C—F键的键能比C—H键更高,使得链结构更加稳固,不易于断键形成新键,这使得PTFE具有很低的表面能及优异的化学稳定性[6]、热稳定性[7]和不沾性[8]等。虽然PTFE具有一定的疏水性(接触角约为126°),但还达不到超疏水(接触角大于150°)的要求,因此对其进行超疏水改性是当前研究的重点。

本文重点介绍了PTFE膜的超疏水改性方法,从分子结构出发归纳为不改变PTFE的化学结构和改变PTFE的化学结构2种改性机制,概括了2种改性方法的优缺点,总结了超疏水PTFE膜的应用现状,以期为PTFE膜的超疏水改性研究提供参考。

1 PTFE膜的超疏水改性方法

目前,根据PTFE膜的超疏水改性原理,从分子结构出发大致可分为2种机制:1)不改变PTFE的化学结构,如纳米颗粒填充法、双组分共混静电纺丝法、浸渍原位沉积法、转印法等;2)改变PTFE的化学结构,如湿化学刻蚀原位沉积法、激光刻蚀法、离子辐照法、等离子体刻蚀法等。

1.1 不改变PTFE的化学结构

以不改变PTFE的化学结构为机制制备的PTFE超疏水膜,从制备工艺上来说可分为一步成形法和两步成形法。

1.1.1 一步成形法

一步成形法是PTFE膜在制备时表面直接呈超疏水性,主要包括纳米颗粒填充法和双组分共混静电纺丝法。

1.1.1.1 纳米颗粒填充法

TiO2、SiO2、ZnO等无机纳米粒子由于自身独特的物理化学性能而广泛应用于PTFE的改性。特别是经过疏水改性的无机纳米粒子能够进一步降低PTFE膜的表面能,并且可与基体形成微纳二元粗糙结构,使纤维膜获得良好的超疏水自清洁能力。

常用的纳米颗粒添加方法包括物理共混法、原位聚合法、原位还原法、溶胶-凝胶法和气相法等。其中物理共混法由于制备条件简单、易于控制纳米粒子形态和尺寸等优点而得到广泛使用[9]。Li等[10]先采用静电纺丝法制备PTFE/聚乙烯醇(PVA)/ZnO复合纤维膜,后去除PVA得到PTFE/ZnO复合膜,ZnO纳米颗粒均匀地固定在PTFE纤维表面,当ZnO含量为0.025 g时,纤维膜表面水接触角达到160.9°,呈现超疏水性。Xu等[11]将聚丙烯腈(PAN)纤维通过共静电纺丝到PTFE/PVA前驱体膜中,并采用Stober法原位生长SiO2纳米颗粒(SiNPs),烧结后的SiNPs分别通过化学键和附着力固定在PAN和PTFE纤维表面,在膜表面形成微纳结构,然后用三甲氧基(1H,1H,2H,2H-十六氟癸基)硅烷(17-FAS)氟化SiNPs,制备的PTFE膜具有较强的两疏性,膜表面水接触角为166.9°,油接触角为134.5°。Ju等[12]先将疏水纳米粒子8-乙烯基接枝在多面体低聚硅氧烷(vinyl-POSS)上,后掺入到PTFE/PVA水溶液中,再通过静电纺丝工艺形成纳米纤维膜,后将纳米纤维膜煅烧制备出超疏水PTFE纤维复合膜,POSS疏水纳米粒子的加入促进了PTFE纳米纤维的结晶,并提高了纤维膜的粗糙度、力学强度和孔隙率。该膜具有三维超疏水性,表面水接触角为(151±4)°。

1.1.1.2 双组分共混静电纺丝法

静电纺丝是一种特殊的多孔纤维膜制备工艺,聚合物溶液或熔体在高压电场作用下,针头处的液滴会由球形变为泰勒锥形,并从圆锥尖端延展得到纤维细丝,进而产生微纳米级直径的聚合物细丝,在接收器上交织形成多孔膜[13]。将PTFE或经改性的PTFE与聚合物混合,形成双组分纺丝液,再通过静电纺丝成膜,这是制备超疏水PTFE膜的一种重要途径。

张晨阳等[14]以PTFE悬浮液为疏水性原料,PVA为黏结剂,采用静电纺丝法制备了不同质量比的PTFE/PVA纤维膜,通过光学接触角测量仪对纤维膜的疏水性能进行测试。结果表明,当PVA与PTFE质量比为1∶6时,制备的纤维膜形貌良好且水接触角高达160°。Huang等[15]采取静电纺丝-烧结法制备了PTFE/全聚氟乙丙烯(FEP)超细纤维覆盖多孔膜。该膜经过烧结工艺处理,纤维熔接在一起形成网状多孔结构,其水接触角达到150°。Pang等[16]将支链淀粉掺杂到PTFE乳液中,用作PTFE颗粒的黏合剂,然后通过静电纺丝-烧结法制得超疏水PTFE膜,该纤维膜在制备过程中不使用有机溶剂,不排放污染物,且具有超疏水性(接触角大于150°)、高孔隙率(85%)和优异的力学性能(弹性模量为39 MPa,断裂应变为245%)等。

1.1.2 二步成形法

二步成形法是通过后整理的方式对现有的疏水性PTFE膜进行改性来实现表面超疏水性,主要包括浸渍原位沉积法和转印法。

1.1.2.1 浸渍原位沉积法

浸渍原位沉积法是将疏水性材料的乳液涂敷在PTFE膜材料上,沉淀后在膜表面形成超疏水层。该方法简便快捷,易于操作,但牢固性较差。

Park等[17]首先在PTFE膜表面涂覆SiO2纳米颗粒,随后通过浸涂法将1H,1H,2H,2H-全氟辛基三氯硅烷(FOTS)沉积在涂覆有SiO2的PTFE膜上,从而制备出超疏水和疏油薄膜,经测试所制备的膜都对水具有较高的疏水性,对十六烷具有较高的疏油性。

1.1.2.2 转印法

Jiang等[2]采用皮秒激光在高强度钢基板上制备出伴有亚微米结构的微孔阵列,并通过热压工艺在PTFE薄膜表面成功转印出直径为24 μm、高度为30 μm的微突起阵列结构,微突起结构表面由直径约为300 nm的亚微米纤维结构覆盖,制备的PTFE膜具有良好的超疏水性能。

根据不改变PTFE的化学结构机制制备的超疏水PTFE膜,其分子结构未发生改变,保留了PTFE原有的特性。然而这些方法仍有不足之处:采用纳米颗粒填充法和浸渍原位沉积法制备的超疏水纤维膜的稳定性较差,纳米颗粒与PTFE之间仅通过物理嵌合作用链接,长期应用过程中会发生脱落,不仅造成膜的疏水性降低,而且脱落的物质会对环境造成二次污染;对于双组分共混静电纺丝法制备工艺较为苛刻,环境温度和湿度对膜性能影响较大,同时制备工艺需要高温煅烧处理,在煅烧时会产生部分有毒气体;对于转印法而言通过物理热压形成的微纳结构并不稳定。受制备工艺影响,这些方法目前均难以实现产业化生产。

1.2 改变PTFE的化学结构

1.2.1 湿化学刻蚀原位沉积法

Xiong等[3]首先用强碱对商业化的PTFE膜进行刻蚀处理,然后依次进行表面3-氨基丙基三乙氧基硅烷处理和三甲氧基(1H,1H,2H,2H-十六氟癸基)硅烷处理,制备了表面接触角为(158±5)°的超疏水PTFE膜。

1.2.2 激光刻蚀法

激光刻蚀法是使用具有高能量密度的激光束照射材料表面,材料吸收激光能量产生热激发升温,进而产生烧蚀、熔化和蒸发等一系列相变过程。该方法具有快速高效、便于定向控制表面形态的优点,缺点是设备较为昂贵、技术具有一定难度,可分为干涉光刻、紫外光刻、皮秒激光技术、飞秒激光技术等[18]

Zhou等[19]利用飞秒激光技术在聚四氟乙烯薄片上加工不同间距的凹槽,获得了接触角高达166°的超疏水表面。Yin等[20]通过飞秒激光直接对PTFE表面进行处理,成功获得超疏水性,所制备的膜表面对于水和乙二醇溶液具有极低的黏附性。Fang等[21]对PTFE膜进行一步飞秒激光处理获得了超疏水PTFE膜,经过激光烧蚀后PTFE表面形成了大量互相连接的气孔和凸起物,提高了表面粗糙度,极大地增大了材料的比表面积,其水接触角为155.5°。

1.2.3 离子辐照法

离子辐照是将一定能量的离子入射到材料表面上,使其与材料表面原子不断碰撞产生微米级别的辐照损伤来构造微观粗糙表面。由于PTFE的低表面能特性使其使用低能离子束就能构造微观粗糙表面,进而获得超疏水性。相比激光刻蚀,该方法的优点是构造微观粗糙表面的速度更快、范围更大,缺点是无法构造复杂的微观结构[22]

Pachchigar等[23]使用低能氩离子束辐照对本体PTFE和物理气相沉积的PTFE薄膜进行处理,发现经角度为20°的800 eV离子束辐照后,PTFE变得超疏水,水接触角从105°增加到157°,且在PTFE薄膜上形成了纳米波纹状图案。

1.2.4 等离子体刻蚀法

离子辐照是使用等离子体处理材料表面来实现功能性表面改性。气体通电后电离转变为导电态,并形成电场,此状态下气体离子会不断地产生直到与自由电子达到平衡,形成等离子体[24]。该方法的优点是可根据需要定向选择等离子体,有效构造表面粗糙结构,缺点是成本较高且无法大面积构筑表面粗糙结构。

Washo[25]首次引入氧等离子体,得到接触角为165°~170°的PTFE超疏水膜表面。Pachchigar等[26]将PTFE膜在功率为5 W的氩等离子体放电下处理100 min,使膜获得了超疏水性,其表面水接触角高达155°。主要原因是膜在等离子体处理下,表面形成大量纳米结构,提高了膜粗糙度。

改变PTFE的化学结构制备的超疏水PTFE膜,不仅PTFE分子结构发生改变,而且膜表面微观形貌也发生变化,制备的超疏水膜具有较高的疏水稳定性,但仍具有以下缺点:PTFE分子结构发生改变,导致膜的化学稳定性降低、力学性能减弱;只能局部进行处理,无法大面积连续化制备;这些改性方法需要昂贵的设备,成本较高。

2 超疏水PTFE膜的应用

超疏水改性后PTFE的表面能进一步降低,可改善其易污染、选择透过性差、使用寿命短等问题,目前主要应用于油水分离、膜蒸馏、印染废水处理等方面。

2.1 油水分离

工业生产和居民生活会产生大量的含油废水,这些废水中含有难以去除的有机油,通过传统的吸附方法难以有效地处理[27-28]。经过表面改性的膜材料在油水分离中广泛应用,如超疏水性/超亲油性膜[29-30]。经过超疏水改性的PTFE膜可完全满足油水分离的要求,并且由于其优良的耐老化和耐腐蚀性,在油水分离领域的应用越来越广泛。

Qin等[31]使用激光刻蚀法制备了表面具有微纳米级粗糙结构的PTFE膜,该膜表现出优异的空气超亲油性(接触角约为0°)和油下超疏水性(接触角大于154°),且在不同强腐蚀性溶液中浸泡24 h后,其仍保持98%以上的油水分离效率,经40次循环实验后油水分离效率仍高于98%,实现了油水的高效分离。Yu等[32]采用离心纺丝技术制备了Janus聚多巴胺-聚四氟乙烯/二氧化钛(PDA-PTFE/TiO2)膜,该膜两侧具有不同的润湿性,可选择性地进行油/水分离,对水-油混合物和乳液的分离效率均在99%以上,且在腐蚀性溶液中浸泡98 h后仍具有较高的分离效率。Chai等[33]提出了一种新型的剪切诱导原位颤动方法来制备PTFE纳米纤维膜,解决了传统PTFE膜在高孔隙率和超细孔径之间无法共存的难题,该膜具有75%的高孔隙率、0.16 μm的孔径和10 μm的极小厚度,且对油/水乳液和固/液溶液的分离效率均在99.9%以上,在重力作用下,渗透通量高达5 197 L/(m2·h)。

2.2 膜蒸馏

膜蒸馏(MD)是一种非等温分离技术,该技术是由疏水膜上的温差引起的蒸气压差驱动完成的,可应用于海水淡化、盐水和废水处理。与其它膜分离技术相比,它具有许多优点,如对非挥发性化合物的高截留率(通常超过99.9%)和较低的工作压力和温度[34-35]。PTFE膜由于具有良好的热稳定性、耐化学性、低表面能、低导热系数和高孔隙率等特点,是MD的良好材料,特别是经过超疏水改性的膜蒸馏效率更高,常用形式为平板膜和中空纤维膜[36-38]

Huang等[36]在PTFE溶液中加入1H,1H,2H,2H-全氟癸基三乙氧基硅烷(PFDTES),制备了一种新型超疏水PFDTES-PTFE膜。与原始膜相比,改性PTFE膜在真空膜蒸馏过程中的膜通量略有下降,经蒸馏3 h后膜通量稳定在0.932 L/(m2·h)左右,除盐率达99.8%。Ju等[12]通过静电纺丝法制备超疏水PTFE膜,当进料温度为60 ℃,渗透温度为20 ℃时,直接接触膜蒸馏(DCMD)水通量为(40±2) L/(m2·h),连续200 h的DCMD操作中具有优异的稳定性。Kim等[37]开发了具有新型交叉影线结构的PTFE纳米纤维膜用于膜蒸馏,交叉影线结构是由PTFE-聚环氧乙烷(PEO)乳液在垂直方向上交替沉积定向排列的纤维而形成,然后烧结去除PEO以获得稳定结构。该膜具有低曲折度、超疏水性和高孔隙率,可快速输送气体和蒸汽,在温差为60 ℃时其水通量可达(98.5±1.2) L/(m2·h)。

2.3 印染废水处理

由于PTFE膜优良的耐化学腐蚀性、稳定性和一定的孔隙结构,可与一些催化剂结合应用。如与光催化-光芬顿催化剂相结合时,PTFE微孔膜既可作为催化剂的载体又可起到一定的过滤阻隔作用,使处理效率显著提高,相比于传统膜具有显著优势。

Li等[38]先使用静电纺丝法制备PTFE纳米纤维膜,然后通过原位生长法将高度多孔的ZIF-8负载在膜上,使膜具有降解有机污染物的能力和超疏水/超亲油性。该膜在强酸/强碱环境下对染料(亚甲基蓝和罗丹明B)和抗生素(四环素)等有机污染物的去除效率高达99.99%。Huang等[39]在PTFE膜表面负载ZnO光催化剂颗粒,在光催化实验中,罗丹明B在紫外光下照射5 h的降解率达到97%,而膜的力学强度在5个循环后损失为3.8%,且膜在水处理后易回收再利用。

2.4 其它应用

除上述应用外,超疏水PTFE膜还可应用于燃料电池、CO2吸收等[37,40]

Kim等[37]制备的超疏水PTFE纳米纤维膜不仅可用于膜蒸馏,而且还可用于膜气体吸收,如CO2吸收分离,具有交叉结构的PTFE纳米纤维膜通过与膜蒸馏过程相似的方式,允许CO2的渗透,同时拒绝溶剂的传输,是将CO2从溶剂中剥离的理想材料。与传统的随机纳米纤维相比,在交叉纳米纤维和微粒复合膜中,CO2剥离的传质都得到了极大的改善。

用于燃料电池的质子交换膜有2个关键标准:一是需要具有良好的力学强度以提高界面兼容性,降低面电阻,提高电池的输出效能;二是具有良好的离子电导率,以提高质子交换速率。Li等[40]制备了掺杂有H3PO4的PTFE/聚苯并咪唑(PBI)复合膜,以提高高温聚合物电解质膜燃料电池(HT-PEMFC)的性能。该膜的最大载荷为35.19 MPa,力学强度良好;在相对湿度为8.4%和温度为180 ℃的条件下,掺杂300%H3PO4复合膜的电导率大于0.3 S/cm。

3 结束语

本文综述了超疏水聚四氟乙烯(PTFE)膜的制备、改性与应用的最新进展,系统总结了不同技术工艺在超疏水PTFE制备和改性中的优缺点。总结超疏水PTFE膜的制备技术,并归纳为2种:不改变PTFE的化学结构和改变PTFE的化学结构。第1种的实现方法较为简便、经济,但由于结合方式大都为物理结合,其牢固程度较低,超疏水性无法长久保持,并且伴有二次污染的问题;第2种的实现方法快速、易于控制表面结构、疏水保持性好,但PTFE分子结构被破坏,会对膜的力学强度、化学稳定性产生不利影响。PTFE膜的超疏水改性技术今后的研究方向可归纳为以下几个方面:

1)开发高效、低成本、耐久稳定、绿色环保的超疏水改性技术,实现超疏水PTFE膜的工业化生产。如纳米颗粒填充法以其操作简便、温和、绿色的优势受到了广泛关注,但纳米颗粒负载不匀、不牢的缺点限制了其的工业应用。后续应对环保型纳米颗粒的选择以及增强牢固度、均匀度的问题进行广泛探索。同时应结合工业化生产PTFE膜的工艺,在双向拉伸制备PTFE膜的工艺中加入纳米颗粒,一步形成超疏水PTFE膜。

2)开发新型温和高效的表面构筑方法,在获得超疏水性的同时尽可能减少对PTFE膜基体的损伤,实现性能和强度的共存。

3)在制膜时控制PTFE结晶态和非结晶态比例,通过增大非结晶态比例来降低PTFE的表面能,从而直接一步实现PTFE膜的超疏水化。

参考文献

GAO H, MAO Y P, WANG W L, et al.

ZIF-8 based dual scale superhydrophobic membrane for membrane distillation

[J]. Desalination, 2023. DOI:10.1016/j.desal.2023.116373.

[本文引用: 1]

JIANG D, FAN P, GONG D, et al.

High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laserablation

[J]. Journal of Materials Processing Technology, 2016, 236: 56-63.

[本文引用: 2]

XIONG Z, LAI Q Y, LU J Y, et al.

Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation

[J]. Journal of Membrane Science, 2023. DOI:10.1016/j.memsci.2023.121546.

[本文引用: 2]

SHIRTCLIFFE N J, MCHALE G, NEWTONE M, et al.

Superhydrophobic copper tubes with possible flow enhancement and drag reduction

[J]. ACS Applied Materials & Interfaces, 2009(1): 1316-1323.

[本文引用: 1]

WANG Y F, KONG A Q, YANG L, et al.

Superhydrophobic wrinkled skin grown on polypropylene membranes enhances oil-water emulsions separation

[J]. Journal of Environmental Chemical Engineering, 2023. DOI:10.1016/j.jece.2023.110247.

[本文引用: 1]

YANG K, PENG Q Y, VENKATARAMAN, et al.

Hydrophobicity, water moisture transfer and breathability of PTFE-coated viscose fabrics prepared by electrospraying technology and sintering process

[J]. Progress in Organic Coatings, 2022. DOI:10.1016/j.porgcoat.2022.106775.

[本文引用: 1]

徐玉康, 朱尚, 靳向煜.

聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势

[J]. 纺织学报, 2017, 38(8): 161-171.

[本文引用: 1]

XU Yukang, ZHU Shang, JIN Xiangyi.

Structure and development of polytetraflu-oroethylene anti-corrosion filtration materials

[J]. Journal of Textile Research, 2017, 38(8): 161-171.

[本文引用: 1]

GUO X M, YAO Y Y, ZHU P X, et al.

Preparation of porous PTFE/C composite foam and its application in gravity-driven oil-water separation

[J]. Polymer International, 2022, 71: 874-883.

[本文引用: 1]

黄启舒, 许里杰.

超疏水自清洁涂料的研究与应用现状

[J]. 化工新型材料, 2020, 48(5): 219-222.

[本文引用: 1]

HUANG Qishu, XU Lijie.

Research and application situation of superhydropholic self-cleaning coating

[J]. New Chemical Materials, 2020, 48(5): 219-222.

[本文引用: 1]

LI M, CHEN F, LIU C, et al.

Electrospun fibrous PTFE supported ZnO for oil-water separation

[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29: 1738-1745.

DOI:10.1007/s10904-019-01135-x      [本文引用: 1]

Polytetrafluoroethylene (PTFE)/polyvinyl alcohol (PVA)/ZnO composite fiber membranes were prepared by electrospinning, and PTFE/ZnO composite films were obtained after removing PVA. Considering that the spinning solution has good spinning performance, the PTFE/ZnO composite film has good flexibility and durability. The zinc oxide powder is evenly fixed on the surface of PTFE fibers, so that the film's flexibility will not be affected during high-temperature calcination. The scanning electron micrograph shows that the morphology of the film is similar to the surface of the lotus leaf. The properties of PTFE/ZnO composite films were investigated by hydrophobic angle test and oil-water separation experiments. Results show that the PTFE/ZnO composite film has good hydrophobicity and oil-water separation performance. With the decrease in ZnO, the contact angle of the PTFE/ZnO composite film increased, and the oil-water separation performance improved. When the amount of ZnO added was 0.025 g, the contact angle was 160.9 degrees, and the oil-water separation performance was the best.

XU M, CHENG J, DU X, et al.

Amphiphobic electrospun PTFE nanofibrous membranes for robust membrane distillation process

[J]. Journal of Membrane Science, 2022. DOI:10.1016/j.memsci.2021.119876.

[本文引用: 1]

JU J, FEJJARI K, CHENG Y, et al.

Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation

[J]. Desalination, 2020. DOI:10.1016/j.desal.2020.114481.

[本文引用: 2]

高凯华, 茆羊羊, 刘公平, .

疏水石墨烯膜的制备及其用于膜蒸馏脱盐的研究进展

[J]. 化工进展, 2020, 39(6): 2135-2144.

DOI:10.16085/j.issn.1000-6613.2020-0063      [本文引用: 1]

膜蒸馏技术由于理论截盐率高、操作条件温和及对盐浓度灵敏度低等优势,在脱盐领域中展现出巨大潜力。近年来,人们开始关注石墨烯材料在膜蒸馏脱盐领域中的应用。本文首先概述膜蒸馏技术的基本原理及常用膜材料;接着介绍石墨烯的疏水性质和疏水石墨烯膜的制备;再详细综述石墨烯混合基质膜、石墨烯复合膜及石墨烯纯膜这三类疏水石墨烯膜在膜蒸馏脱盐中的应用;最后总结疏水石墨烯用于膜蒸馏脱盐面临的主要挑战及未来研究方向。

GAO Kaihua, MAO Yangyang, LIU Gongping, et al.

Progresses in preparation of hydrophobic graphene-based membranes and their application for membrane distillation desalination

[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2135-2144.

DOI:10.16085/j.issn.1000-6613.2020-0063      [本文引用: 1]

Membrane distillation technology has shown great potential in desalination owing to its advantages such as high theoretical salt rejection rate, mild operating conditions and low sensitivity to feed salt concentration. In recent years, growing attention has been paid on using graphene for membrane distillation desalination. First, the introduction and membrane materials of membrane distillation technology were outlined in this paper. Next, the hydrophobicity of graphene and preparation methods of hydrophobic graphene membrane were introduced, followed by a detailed review of three kinds of hydrophobic graphene-based membranes (i.e., graphene mixed matrix membranes, graphene composite membranes, and pure graphene membranes) for membrane distillation. Finally, current challenges and future research directions of hydrophobic graphene for membrane distillation desalination were prospected.

张晨阳, 李新梅, 刘伟斌, .

PVA与PTFE质量比对PTFE/PVA纤维膜形貌和性能的影响

[J]. 化工新型材料, 2023, 51(8): 90-94.

[本文引用: 1]

ZHANG Chenyang, LI Xinmei, LIU Weibin, et al.

Effects of the mass ratios of PVA and PTFE on the morphology and properties of PTFE/PVA fiber membranes

[J]. New Chemical Materials, 2023, 51(8): 90-94.

[本文引用: 1]

HUANG Y, XIAO C F, HUANG Q L, et al.

Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation

[J]. Journal of Membrane Science, 2018, 568: 87-96.

[本文引用: 1]

PANG H, TIAN K, LI Y, et al.

Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination

[J]. Separation and Purification Technology, 2021. DOI:10.1016/j.seppur.2020.118186.

[本文引用: 1]

PARK E J, KIM D H, LEE J H, et al.

Fabrication of a superhydrophobic and oleophobic PTFE membrane: an application to selective gas permeation

[J]. Materials Research Bulletin, 2016, 83: 88-95.

[本文引用: 1]

ZHAN Y L, RUAAN M, LI W, et al.

Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior

[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535: 8-15.

[本文引用: 1]

ZHOU S S, HU Y Y, HUANG Y, et al.

Preparation of polytetrafluoroethylene superhydrophobic materials by femtosecond laser processing technology

[J]. Ploymers, 2023. DOI:10.3390/polym16010043.

[本文引用: 1]

YIN K, DU H, LUO Z, et al.

Multifunctional micro/nano-patterned PTFE near-superamphiphobic surfaces achieved by a femtosecond laser

[J]. Surface and Coatings Technology, 2018, 345: 53-60.

[本文引用: 1]

FANG Y, YONG J, CHEN F, et al.

Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications

[J]. Applied Physics A, 2016, 122: 1-7.

[本文引用: 1]

GARG S K, DATTA D P, GHATAK J, et al.

Tunable wettability of Si through surface energy engineering by nanopatterning

[J]. RSC Advances, 2016, 6(54): 48550-48557.

[本文引用: 1]

PACHCHIGAR V, PARIDA B K, AUGUSTINE S, et al.

Comparative wettability study of bulk and thin film of polytetrafluoroethylene after low energy ion irradiation

[J]. Thin Solid Films, 2023. DOI:10.1016/j.tsf.2023.139888.

[本文引用: 1]

王晓光, 朱晓明, 尹延昭, .

离子体刻蚀工艺的优化研究

[J]. 中国新技术新产品, 2010(14): 28.

[本文引用: 1]

WANG Xiaoguang, ZHU Xiaoming, YIN Yanzhao, et al.

Optimization of plasma etching technology

[J]. China New Technologies and Products, 2010(14): 28.

[本文引用: 1]

WASHO B D.

Highly nonwettable surfaces via plasma polymer vapor deposition

[J]. Polymers in Electronics, 1982, 47: 69-72.

[本文引用: 1]

PACHCHIGAR V, GAUR U K, TV A, et al.

Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma-nanostructured PTFE surfaces

[J]. Plasma Processes and Polymers, 2022. DOI:10.1002/ppap.202200037.

[本文引用: 1]

GAO S J, SHI Z, ZHANG W B, et al.

Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions

[J]. ACS Nano, 2014, 8(6): 6344-6352.

[本文引用: 1]

HUANG K T, YEH S B, HUANG C J.

Surface modification for superhydrophilicity and underwater superoleophobicity: applications in antifog, underwater self-cleaning, and oil-water separation

[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21021-21029.

[本文引用: 1]

ZHANG W, SHI Z, ZHANG F, et al.

Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux

[J]. Advanced Materials, 2013, 25(14): 2071-2076.

[本文引用: 1]

DU C, WANG J, CHEN Z, et al.

Durable superhydrophobic and superoleophilic filter paper for oil-water separation prepared by a colloidal deposition method

[J]. Applied Surface Science, 2014, 313: 304-310.

[本文引用: 1]

QIN Z L, XIANG H Q, LIU J G, et al.

High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling

[J]. Materials & Design, 2019. DOI:10.1016/j.matdes.2019.108200.

[本文引用: 1]

YU X, ZHU W, LI Y, et al.

Dual-bioinspired fabrication of Janus Micro/nano PDA-PTFE/TiO2 membrane for efficient oil-water separation

[J]. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125201.

[本文引用: 1]

CHAI J, WANG G, ZHANG A, et al.

Robust polytetrafluoroethylene (PTFE) nanofibrous membrane achieved by shear-induced in-situ fibrillation for fast oil/water separation and solid removal in harsh solvents

[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.141971.

[本文引用: 1]

IZQUIERDO-GIL M A, ABILDSKOV J, JONSSON G.

The use of VMD data/model to test different thermodynamic models for vapour-liquid equilibrium

[J]. Journal of Membrane Science, 2004, 239(2): 227-241.

[本文引用: 1]

LEE E J, DEKA B J, AN A K.

Reinforced superhydrophobic membrane coated with aerogel-assisted polymeric microspheres for membrane distillation

[J]. Journal of Membrane Science, 2019, 573: 570-578.

[本文引用: 1]

HUANG J, CAI S W, GAO Y, et al.

Superhydrophobic polytetrafuoroethylene hollow fiber membrane based on fuoroalkylsilanes for vacuum membrane distillation

[J]. Desalination and Water Treatment, 2022, 277: 21-29.

[本文引用: 2]

KIM S, HEATH D E, KENTISH S E.

Robust and superhydrophobic PTFE membranes with crosshatched nanofibers for membrane distillation and carbon dioxide strip

[J]. Advanced Materials Interfaces, 2022. DOI:10.1002/admi.202200786.

[本文引用: 4]

LI Y, FAN T, CUI W, et al.

Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation

[J]. Separation and Purification Technology, 2023, 306: 1-8.

[本文引用: 2]

HUANG Y, HUANG Q, XIAO C, et al.

Supported electrospun ultrafine fibrous poly (tetrafluoroethylene)/ZnO porous membranes and their photocatalytic applications

[J]. Chemical Engineering & Technology, 2018, 41(3): 656-662.

[本文引用: 1]

LI M, SCOTT K.

A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

[J]. Electrochimica Acta, 2010, 55(6): 2123-2128.

[本文引用: 2]

/