针对纤维拉伸断裂声发射信号的非平稳性、信号特征间高度重叠等问题,提出一种声发射信号特征提取及纤维种类诊断的模型。该模型可用于识别拉伸断裂的纤维种类。首先,通过小波变换、增强经验模态分解方法(EEMD)对不同种纤维的拉伸断裂声发射信号进行预处理、分解;然后,结合主成分分析方法(PCA)提取频率特征;最后,运用最小二乘支持向量机(LSSVM)对纤维拉伸断裂的特征频率进行分类识别。结果表明,主成分分析方法能将信号特征降维,并降低不同纤维频率特征之间相关性,提高了对纤维拉伸断裂声发射信号的准确识别。针对芳纶1313、高性能维纶纤维拉伸断裂的声发射信号,EEMD-PCA-LSSVM模型总识别率达96%。