针对织物缺陷检测过程中纹理分布的复杂多样性引起误检和漏检的问题,结合织物纹理周期性特点,提出一种多纹理分级融合的织物缺陷检测算法。在检测过程中,首先利用织物缺陷图像的Tamura粗糙度图,对缺陷区域进行初步定位和自适应性生长,将初步定位的区域映射到原始织物图像中;其次根据织物图像的周期性分布特征,对初步定位区域进行分块,提取图像块的局部相位量化(LPQ)特征、Tamura特征,并将2种特征融合;然后计算融合特征与正常块特征的相似度,获取相似度图;最后将初步定位区域的经纬向特征图与相似度特征图融合,检测缺陷存在的区域。经TILDA织物纹理库数据的实验测试结果表明,缺陷区域的初步定位和自适应生长,降低了缺陷检测过程的冗余度,提高了检测效率,避免了织物缺陷检测过程中的误检和漏检情况。